Uranium Oxide as a Highly Reflective Coating from ev

Size: px
Start display at page:

Download "Uranium Oxide as a Highly Reflective Coating from ev"

Transcription

1 Uranium Oxide as a Highly Reflective Coating from ev Richard L. Sandberg, David D. Allred*, Luke J. Bissell, Jed E. Johnson, R. Steven Turley Department of Physics and Astronomy, Brigham Young University, N-283 ESC, Provo, UT USA 8462 *allred@byu.edu; phone ; fax ; xuv.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium and naturally oxidized nickel thin films from 1-46 ev (2.7 to 11.6 nm) at 5, 1, and 15 degrees grazing incidence. These show that uranium, as UO2, can fulfill its promise as the highest known single surface reflector for this portion of the soft x-ray region, being nearly twice as reflective as nickel in the ev (5-1 nm) region. This is due to its large index of refraction coupled with low absorption. Nickel is commonly used in soft x-ray applications in astronomy and synchrotrons. (Its reflectance at 1 exceeds that of Au and Ir for most of this range.) We prepared uranium and nickel thin films via DC-magnetron sputtering of a depleted U target and resistive heating evaporation respectively. Ambient oxidation quickly brought the U sample to UO2 (total thickness about 3 nm). The nickel sample (5 nm) also acquired a thin native oxide coating (<2nm). Though the density of U in UO2 is only half of the metal, its reflectance is high and it is relatively stable against further changes. There are important discrepancies between UO2 s actual reflectance with those predicted by the atomic scattering factor model indicative of the need to determine the actual constants of UO2. 1

2 1. Computed of Uranium Very High for EUV/Soft X-ray X Region Fig. 1: Delta verses beta plot for several elements at 277 ev (4.48 nm). Nickel and its neighboring 3d elements are the nearest to uranium in this area. 2

3 Computed, ASF model, CXRO Ni NiO U UO2 Fig. 2: Here we compare the reflectance for Ni, NiO, U, and UO2 predicted by the atomic scattering factor model from the CXRO website (www-cxro.lbl.gov). 3

4 2. Methodology Sample Creation 2.1 Sample Creation/Experimental Setup The uranium oxide and nickel samples were deposited on pieces of commercially available, polished silicon test wafers (1 orientation). Fig. 3: Schematic of DC magnetron sputtering system at BYU UO2 DC Magnetron Sputtering We used a DC magnetron sputtering system on Brigham Young University campus to deposit the uranium sample. The materials to be sputtered are made into cylindrical targets which are fastened onto the top of the sputter guns. The uranium sputter targets used here were of depleted uranium metal (less than.2% U-235). After sputtering, the uranium was allowed to oxidize naturally in laboratory air. Prior to this study, studies of the oxidation rates of uranium thin films have been conducted. 4

5 Uranium is subject to extensive oxidation in laboratory air, about 6 nm in 13 min, and more than 13 nm in a day. Oliphant further showed that the uranium oxidizes into films of UO2+x (x~) which can be a few nanometers thick under typical laboratory conditions (room ambient). It should be noted that many bulk oxides of uranium are known. Even a given composition, such as UO3, many different crystal structures are known. Also UO2 tolerates a large range of nonstoichiometry. The x in UO2+x can reach.25 before inducing crystal changes. Members of our group are currently studying these subtleties using XPS and TEM. For the purpose of this paper the oxide will be called UOx; although, it is closest to UO2 whose stoichiometry and handbook density of 19 g/cc will be used in calculation in accordance with Oliphant s findings Ni Evaporation Our nickel films were prepared by evaporating Ni wire from a resistively heated tungsten boat (RD Mathis Co.) in a large, cryopumped, stainless steel bell jar coater. The base pressure of the system was 3.2 x1-4 Pa (2.4 x1-6 torr), high vacuum. A quartz crystal monitor was used to measure the evaporation rate. The source was shuttered as the voltage to the tungsten boat was increased. When the evaporation rate reached about 1-2 nm/s, the shutter was opened and the substrates were coated. Fast deposition rates are known to be preferable in obtaining the highest reflectance for aluminum and many materials. This is probably due to their limiting the extent to which impurities, usually oxygen, are drawn into the film from residual air and water vapor in the vacuum. After the monitor recorded about 91 nm of film the voltage to the source was cut, the box was vented to air and the films removed for further study on June 5, 23. We found the Ni layer thickness to be 49.7 nm with x-ray diffraction (XRD) Thickness determination: Characterization with XRD and IMD Fitting. Thin-film interference of x rays was used to determine the thickness of our deposited thin films. Using a Scintag X-ray diffractometer (XRD), we measured the low-angle reflectance maxima and minima. The Scintag diffractometer produces collimated x ray radiation from a rotating copper target, which was scattered off of the sample. A liquid nitrogen cooled intrinsic germanium detector in photon counting mode was gated to accept Kα radiation (.154 nm) and reject Kβ and bremstrahlung radiation above and below Cu Kα. Angle scans at low angles (usually from 1-3.5, 2θ, grazing incidence angles) were taken. These scans showed interference fringes. At firstorder approximation, the data can be modeled with an equation which resembles the Bragg diffraction, mλ=2dsinθ, where m is the diffraction order, λ is the wavelength of the diffractometer radiation in the material being measured, d is the layer thickness, and θ is the angle between the incident and refracted beam.8 The Bragg equation as written above does not take into account the refraction of the x rays in the material. It is adequate for approximating the thickness of the film but to properly obtain the thickness we must match the spectra with a computer model. We used IMD to model our layers. Then by adjusting the thickness of the modeled layer, the diffraction peaks of the model and the measured XRD scan can be compared until the numbers of peaks in the same angle interval are the same and the peak positions match. The computed value for thickness is then approximately the same as the real layer thickness. For nickel, this thickness was 49.7± nm. For the uranium oxide sample this was 31.8± nm. 5

6 Fig. 4: Schematic of ALS beamline courtesy of ALS Reflectometry The reflectance measurements where conducted at the Advanced Light Source (ALS) at Lawrence Berkley National Laboratory at the University of California-Berkley on beamline Fig. 4 shows a schematic of this beamline. This beamline has a reflectometer setup with three gratings (2 lines/mm, 6 lines/mm, and 12 lines/mm) which allow the user to measure sample reflectance from 5 to 13 ev (1 to 24.8 nm ) at various angles. Different filters corresponding to these gratings select which wavelength ranges are desired. However, the filters do not perfectly suppress other orders than the target order, so the source is not perfectly monochromatic. This non-monochromatic nature can cause reflectances of overlapping wavelength regions to vary slightly as can be seen in Fig s can also vary from range to range if the beam strikes a differed part of the sample. Some of the measurements were made after the sample had been removed and then returned to the reflectometer. The process of normalization to extract reflectances are described in more detail along with further details on beamline at the CXRO webpage and can be found in Underwood. 6

7 3. Measured Data Note that each chart has three lines (Fig. 5-7). The curves with squares, circles and triangles correspond to the measured reflectance of UOx, NiO on Ni, and Ni on Quartz respectively. This is what these labels mean: 1. UOx stands for uranium with its native oxide which is almost UO2. 2. NiO on Ni stands for evaporated Ni on a Silicon wafer. We brought a deep UV/ ozone lamp to the ALS for the purpose of cleaning the adventitious carbon-containing layer off our samples. This lamp is known to remove the organic layer from the native oxide coating a silicon wafer in about 45 seconds. (This can be seen on silicon surfaces which go from hydrophobic to hydrophilic in about 45 seconds as the carbon containing layer on top dissipates). To insure that the sample had an ample opportunity to lose organic materials we exposed our nickel to three full minutes of UV light. However, the most obvious change was not the elimination of carbon but the darkening of the surface. We take this coloring to be tarnishing (oxidation) of the metal. This oxidation needs to be further investigated to see if the darkening is due to oxidation and what thickness of oxide is produced. 3. Ni on Quartz- This sample wasn t cleaned with UV light. Its surface remained visibly bright. However, the usual surface quality of the quartz is not as high as is typical for the silicon wafers. One of the evidences is in the figure error seen for the nickel on quartz sample. It wasn t flat. At ALS, when we sought to align the sample at low angles we could see the image of the soft x-ray beam smeared out or broken up into several bands depending on the spot on the sample which it illuminated. In contrast, the reflected image off of the nickel-on-silicon-wafer sample focused well. We had previously measured via AFM the surface roughness of silicon wafers and quartz samples with and without coatings. We have always observed the surface smoothness of our quartz sample to be inferior to those of silicon. We had not measured the nanoroughness of the nickel coated quartz sample but speculate that it is rougher than the silicon samples. 7

8 Fig. 5: Measure reflectance of UOx, NiO on Ni, and Ni on quartz at 5 degrees from ev. 8

9 Fig. 6: at 1 degrees of UO2, NiO on Ni, Ni on Quartz from ev. 9

10 Fig. 7: at 15 degrees of UO2, NiO on Ni, and Ni on Quartz from ev. 1

11 4. Measured Data Comparison to Atomic Scattering Factor Model Measured UOx Computed UOx with nm C on top Computed UOx (d=3 nm) Computed UOx with C(density=1.5g/cc) 3 nm Fig. 8: s of measured UOx and three structures modeled from the CXRO website. The three structures models are 3 nm of UOx with no carbon contamination on top, 3 nm of UOx with. 5 nm of carbon on top, and 3 nm of UOx with 3 nm of carbon contamination on top (density=1.5 g/cc). Notice how the absorption edge predicted by the atomic scattering factor model used in the 11 CXRO models does not appear in the measured data.

12 Measured UOx IMD UO2 Fig. 9: Measured UOx and IMD computed reflectances (at 5 degrees). The computed structure was modeled as 3. nm of UOx on top of silicon with 3. nm 12 of carbon contamination on top.

13 Measured NiO on Ni IMD NiO on Ni Fig. 1: Measured NiO on Ni and IMD computed reflectances (at 5 degrees). The computed structure was modeled as 2. nm of NiO on top of 47.7 nm of Ni on a silicon 13 substrate with 2. nm of surface roughness and 2. nm of carbon contamination.

14 Measured Ni on Quartz IMD Ni on Quartz Fig. 11: Measured Ni on quartz and IMD computed reflectance (at 5 degrees). The computed structure was model as 2. nm of NiO on top of 47.7 nm of Ni on a quartz 14 substrate with 5.2 nm of surface roughness and 2. nm of carbon contamination.

15 5. CONCLUSIONS Naturally oxidized uranium thin film reflectors were found to be more reflective than nickel or nickel oxide on nickel over a large range of angles and wavelengths as predicted by the ASF model. Specifically, uranium reflects more than nickel at 5 degrees grazing incidence from ev, at 1 degrees from ev, and at 15 degrees from ev. We therefore recommend that uranium based mirror coatings should be developed and implemented for future projects where broadband, low angle, soft x-ray mirrors are required. We additionally report that nickel-oxide coatings reflect more than nickel at higher energies (lower wavelengths ). (The oxidation rate and oxidation process of nickel are currently being investigated and will be reported in a future article). Another finding of this report is that the complex indices of refraction probably differ noticeably from the reported values from the atomic scattering factor model at the higher wavelengths. We conclude this based upon inability of the ASF model to reproduce the (interference fringe) minimum at about 13 ev in the ASF model and by the fact that the absorption edge is not at 112 ev as reported by the model. We suggest that the absorption or k is less than the ASF model predicts for UO2. We are in the processes of determining the index of refraction for naturally oxidized uranium over the soft x-ray and EUV range. ACKNOWLEDGEMENTS We are grateful to Hollilyn Drury and Megan Rowberry for aiding in sputtering the uranium film studied. An SPIE scholarship to one of us, Richard Sandberg aided in the research. We also acknowledge grateful the financial contributions of V. Dean and Alice J. Allred and Marathon Oil Company (US Steel) for gifts to Brigham Young University for thin film research. 15

16 References See, for example, a. D.D. Allred, R. S. Turley, and M. B. Squires, Dual-function EUV multilayer mirrors for the IMAGE mission, in EUV, X-Ray and Neutron Optics, Carolyn A. Macdonald, Kenneth A. Goldberg, Juan R. Maldonado, H. Heather Chen-Mayer, and Stephen P. Vernon, Editors, Proceedings of SPIE 3767, pp , SPIE, Bellingham, WA, b. Matthew B. Squires. The EUV Optical Constants of Sputtered U and a-si, Honors Thesis, Brigham Young University, Provo, UT, April The curves for these plots were computed at the CXRO website using the option thick mirrors, that is, single surface mirrors with zero surface roughness. The refractive indices, which are needed for the calculation, were calculated using the atomic scattering factor model using densities which we supplied the program. We used the CRC Handbook of Chemistry and Physics for densities. That is, there was no effort made to obtain the actual densities of the films. Shannon Lunt, Determining the Indices of Refraction of Reactively Sputtered Uranium Dioxide Thing Films from 46 to 584 Angstroms, Masters Thesis, Dept. of Physics and Astronomy, BYU, Provo, UT 22. Contact the BYU HBL library at G.B Thompson and D.D. Allred, Reactive Gas Magnetron Sputtering of Lithium Hydride and Lithium Fluoride Thin Films, J.X-ray Sci. Technol. 7, pp , David Oliphant (oliphantd@byui.edu), Characterization of Uranium, Uranium Oxide and Silicon Multilayer Films, Masters thesis, Dept. of Physics and Astronomy, BYU, Provo, UT 2. Contact the BYU HBL library at or in partial form (missing some figures) at Kristi R. Adamson, to be published in Utah Academy of Arts and Sciences. Hollilyn Drury and Megan Rowberry, May 21international Science Fair, Columbus OH, USA J.H. Underwood et al. Calibration and standards beamline at the Advanced Light Source. Rev. Sci. Instrum., 67 (9), 1-5 (1996). July, 23 or contact Eric Gullikson from the webpage for additional questions. J.H. Underwood et al. Calibration and standards beamline at the Advanced Light Source. Rev. Sci. Instrum., 67 (9), 1-5 (1996). July, 23 or contact Eric Gullikson from the webpage for additional questions. Program for EUV and X-ray reflectance calculations, courtesy of Prof. David L. Windt: windt@astro.columbia.edu. 16

Removing Surface Contaminants from Silicon Wafers to Facilitate EUV Optical Characterization

Removing Surface Contaminants from Silicon Wafers to Facilitate EUV Optical Characterization Removing Surface Contaminants from Silicon Wafers to Facilitate EUV Optical Characterization R.E. Robinson, Department of Physics & Astronomy, University of Rochester, Rochester, NY; and R.L. Sandberg,

More information

Bare Aluminum Oxidation

Bare Aluminum Oxidation Brigham Young University BYU ScholarsArchive All Faculty Publications 2017-11-22 Bare Aluminum Oxidation R. Steven Turley Brigham Young University, turley@byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

Development of High-Reflective W/Si-multilayer Diffraction Grating for the Analysis of Fluorine Materials

Development of High-Reflective W/Si-multilayer Diffraction Grating for the Analysis of Fluorine Materials Journal of Photopolymer Science and Technology Volume 28, Number 4 (2015) 531 536 2015SPST Development of High-Reflective W/Si-multilayer Diffraction Grating for the Analysis of Fluorine Materials Masaki

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Arts / Science in Physics from The College of

More information

Preventing Oxidation of Aluminum Films with Cadmium of Zinc Barriers

Preventing Oxidation of Aluminum Films with Cadmium of Zinc Barriers Brigham Young University BYU ScholarsArchive All Student Publications 2016-08-10 Preventing Oxidation of Aluminum Films with Cadmium of Zinc Barriers Spencer B. Perry Brigham Young University - Provo,

More information

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers Anti-Reflection Custom Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition Anti-Reflection on Optical Fibers OptoSigma supplies a wide selection of optical

More information

Instrument Configuration for Powder Diffraction

Instrument Configuration for Powder Diffraction Instrument Configuration for Powder Diffraction Advanced X-ray Workshop S.N. Bose National Centre for Basic Sciences, 14-15/12/2011 Innovation with Integrity Overview What is the application? What are

More information

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

AC Reactive Sputtering with Inverted Cylindrical Magnetrons AC Reactive Sputtering with Inverted Cylindrical Magnetrons D.A. Glocker, Isoflux Incorporated, Rush, NY; and V.W. Lindberg and A.R. Woodard, Rochester Institute of Technology, Rochester, NY Key Words:

More information

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) Optical Coatings Photonics 4 Luxury Coatings 21.06.2017, Genève Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) RhySearch The Research- and Innovation Center in the Rhine Valley RhySearch

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Evaporated Aluminum Fluoride as a Barrier Layer to Retard Oxidation of Aluminum Mirrors

Evaporated Aluminum Fluoride as a Barrier Layer to Retard Oxidation of Aluminum Mirrors Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-12-01 Evaporated Aluminum Fluoride as a Barrier Layer to Retard Oxidation of Aluminum Mirrors Margaret Miles Brigham Young

More information

EUV Technology, Martinez, CA

EUV Technology, Martinez, CA Compact in-line EUV Laser Plasma Reflectometer for the measurement reflectivity and uniformity of EUV Lithography Mask Blank Multilayer Coatings Rupert C. C. Perera & James H. Underwood EUV Technology,

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes, and Yuepeng Deng Department of Materials Science and Engineering University

More information

X-Ray Diffraction Analysis

X-Ray Diffraction Analysis 162402 Instrumental Methods of Analysis Unit III X-Ray Diffraction Analysis Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

This experiment is included in the upgrade packages: XRC 4.0 X-ray characteristics and XRS 4.0 X-ray structural analysis.

This experiment is included in the upgrade packages: XRC 4.0 X-ray characteristics and XRS 4.0 X-ray structural analysis. Characteristic X-rays of copper TEP Related Topics X-ray tube, bremsstrahlung, characteristic radiation, energy levels, crystal structures, lattice constant, absorption, absorption edges, interference,

More information

High Resolution X-ray Diffraction

High Resolution X-ray Diffraction High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole

The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole University of Groningen The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201500039 An Optoelectronic Resistive Switching Memory with Integrated

More information

Introduction to Lithography

Introduction to Lithography Introduction to Lithography G. D. Hutcheson, et al., Scientific American, 290, 76 (2004). Moore s Law Intel Co-Founder Gordon E. Moore Cramming More Components Onto Integrated Circuits Author: Gordon E.

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems James R. Connolly Dept. of Earth & Planetary Sciences University of New Mexico 401/501

More information

Understanding Optical Coatings For Military Applications

Understanding Optical Coatings For Military Applications Understanding Optical Coatings For Military Applications By Trey Turner, Chief Technology Officer, REO Virtually all optical components used in military applications, such as target designation, rangefinding

More information

Measurement of thickness of native silicon dioxide with a scanning electron microscope

Measurement of thickness of native silicon dioxide with a scanning electron microscope Measurement of thickness of native silicon dioxide with a scanning electron microscope V. P. Gavrilenko* a, Yu. A. Novikov b, A. V. Rakov b, P. A. Todua a a Center for Surface and Vacuum Research, 40 Novatorov

More information

Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet

Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2007-11-30 Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet Guillermo Antonio Acosta Brigham Young

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Precision Optical Engineering

Precision Optical Engineering Precision Optical Engineering Products: Prisms Windows Mirrors Flats and Master angles Sight Glasses Key Features: Prisms (Contacted, Cemented, AR coated, Mounted) Windows (Flat, wedged, curved, drilled,

More information

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Hitachi Review Vol. 65 (2016), No. 7 233 Featured Articles Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Ion-beam-based Photomask Defect Repair

More information

GEOL.3070 EARTH MATERIALS I FORENSIC APPLICATIONS OF X-RAY DIFFRACTION

GEOL.3070 EARTH MATERIALS I FORENSIC APPLICATIONS OF X-RAY DIFFRACTION GEOL.3070 EARTH MATERIALS I FORENSIC APPLICATIONS OF X-RAY DIFFRACTION NAME I. Introduction Our knowledge of the crystalline state is gained by studies utilizing x-rays (the field of x- ray crystallography).

More information

Determining the Cause of Metal Oxide Film Growth Due to. Exposure to Vacuum Ultraviolet Light. Alison Wells

Determining the Cause of Metal Oxide Film Growth Due to. Exposure to Vacuum Ultraviolet Light. Alison Wells Determining the Cause of Metal Oxide Film Growth Due to Exposure to Vacuum Ultraviolet Light Alison Wells A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of

More information

Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection

Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection X.M. Zhang, W. Wen, X.L.Li, X.T. Zhou published on Dec 2012 PHYS 570 Instructor

More information

Supporting Information for Manuscript B516757D

Supporting Information for Manuscript B516757D Supporting Information for Manuscript B516757D 1. UV-Vis absorption spectra Absorbance (a.u.) 0.4 0.2 5F 6F 7F 0.0 300 400 500 Wavelength (nm) Figure S1 UV-Vis spectra of, 5F, 6F and 7F in CHCl 3 solutions

More information

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Journal of Optoelectronics and Advanced Materials Vol. 4, No. 3, September 2002, p. 809-812 MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Foundation for Research

More information

Solution-processed CdS thin films from a single-source precursor

Solution-processed CdS thin films from a single-source precursor Electronic Supplementary Information: Solution-processed CdS thin films from a single-source precursor Anthony S. R. Chesman,* a Noel W. Duffy, a Alessandro Martucci, b Leonardo De Oliveira Tozi, a Th.

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

X-RAY DIFFRACTION CHARACTERIZATION OF MULTILAYER EPITAXIAL THIN FILMS DEPOSITED ON (0001) SAPPHIRE

X-RAY DIFFRACTION CHARACTERIZATION OF MULTILAYER EPITAXIAL THIN FILMS DEPOSITED ON (0001) SAPPHIRE The Rigaku Journal Vol. 13/No. 1/ 1996 CONTRIBUTED PAPERS X-RAY DIFFRACTION CHARACTERIZATION OF MULTILAYER EPITAXIAL THIN FILMS DEPOSITED ON (0001) SAPPHIRE THOMAS N. BLANTON AND LIANG-SUN HUNG Imaging

More information

INVESTIGATION OF THE EFFECT OF OBLIQUELY INCIDENT DEPOSITION ON STRUCTURAL, MORPHOLOGICAL AND OPTICAL PROPERTIES OF CuInS 2 THIN FILMS

INVESTIGATION OF THE EFFECT OF OBLIQUELY INCIDENT DEPOSITION ON STRUCTURAL, MORPHOLOGICAL AND OPTICAL PROPERTIES OF CuInS 2 THIN FILMS Research and Reviews in Materials Science and Chemistry Vol. 2, Issue 1, 2013, Pages 1-17 ISSN 2319-6920 Published Online on March 30, 2013 2013 Jyoti Academic Press http://jyotiacademicpress.net INVESTIGATION

More information

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Friðrik Magnus 1, Árni S. Ingason 1, Ólafur B. Sveinsson 1, S. Shayestehaminzadeh 1, Sveinn Ólafsson 1 and Jón Tómas Guðmundsson 1,2 1 Science

More information

PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM. Fraunhofer

PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM. Fraunhofer PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM EOSS ENHANCED OPTICAL SPUTTERING SYSTEM Fraunhofer IST, Braunschweig Contact: Dr. M. Vergöhl +49 531 2155 640 EOSS Coating System

More information

SUMMARY AND CONCLUSION

SUMMARY AND CONCLUSION 5 SUMMARY AND CONCLUSION Energy in the form of heat is required for diverse applications in various sectors including domestic, agricultural, commercial and industrial sectors. As there is a gap between

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

ZnO-based Transparent Conductive Oxide Thin Films

ZnO-based Transparent Conductive Oxide Thin Films IEEE EDS Mini-colloquium WIMNACT 32 ZnO-based Transparent Conductive Oxide Thin Films Weijie SONG Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1200448/dc1 Supporting Online Material for Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals This PDF file

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

Supporting Information

Supporting Information Supporting Information Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse Xufan Li, Ming-Wei Lin, Alexander A. Puretzky, Juan C. Idrobo, Cheng Ma,

More information

Layer Thickness Analysis of Thin Metal Coatings with. Bruker Nano Analytics, Berlin, Germany Webinar, June 8 th 2017

Layer Thickness Analysis of Thin Metal Coatings with. Bruker Nano Analytics, Berlin, Germany Webinar, June 8 th 2017 Layer Thickness Analysis of Thin Metal Coatings with micro-xrf on SEM Bruker Nano Analytics, Berlin, Germany Webinar, June 8 th 2017 09.06.2017 Presenters Stephan Boehm Product Manager Micro-XRF/SEM Bruker

More information

Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer

Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 177 Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer

More information

Detectors and Coatings for Efficient Systems for Future UV Astronomy

Detectors and Coatings for Efficient Systems for Future UV Astronomy Detectors and Coatings for Efficient Systems for Future UV Astronomy John Hennessy M. E. Hoenk, A. Carver, T.J. Jones, A. Jewell, E. Hamden, T. Goodsall, S. Nikzad Jet Propulsion Laboratory, California

More information

Thickness and composition analysis of thin film samples using FP method by XRF analysis

Thickness and composition analysis of thin film samples using FP method by XRF analysis Technical articles Thickness and composition analysis of thin film samples using FP method by XRF analysis Hikari Takahara* 1. Introduction X-ray fluorescence spectroscopy (XRF) is an elemental quantification

More information

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites Solar Energy Materials & Solar Cells 8 () 339 38 Structure and optical properties of M/ (M=Au, Cu, Pt) nanocomposites U. Pal a,b, *, J. Garc!ıa-Serrano a, G. Casarrubias-Segura a, N. Koshizaki c, T. Sasaki

More information

Physical structure of matter. Monochromatization of molybdenum X-rays X-ray Physics. What you need:

Physical structure of matter. Monochromatization of molybdenum X-rays X-ray Physics. What you need: X-ray Physics Physical structure of matter Monochromatization of molybdenum X-rays What you can learn about Bremsstrahlung Characteristic radiation Energy levels Absorption Absorption edges Interference

More information

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants Damage Threats and Response of Final Optics for Laser-Fusion Power Plants M. S. Tillack 1, S. A. Payne 2, N. M. Ghoniem 3, M. R. Zaghloul 1 and J. F. Latkowski 2 1 UC San Diego, La Jolla, CA 92093-0417

More information

Characterization of Materials Using X-Ray Diffraction Powder Diffraction

Characterization of Materials Using X-Ray Diffraction Powder Diffraction Praktikum III, Fall Term 09 Experiment P1/P2; 23.10.2009 Characterization of Materials Using X-Ray Diffraction Powder Diffraction Authors: Michael Schwarzenberger (michschw@student.ethz.ch) Philippe Knüsel

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 1400 ma-n 1400 is a negative tone photoresist series designed for the use in microelectronics and microsystems. The resists are

More information

At wavelength characterization of EUV and soft X-ray gratings

At wavelength characterization of EUV and soft X-ray gratings At wavelength characterization of EUV and soft X-ray gratings F. Scholze, A, Haase, C. Laubis, V. Soltwisch, J. Wernecke, M. Krumrey Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin,

More information

Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test

Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test Materials Transactions, Vol. 52, No. 3 (2011) pp. 464 to 468 #2011 The Japan Institute of Metals Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated

More information

Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD

Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD AIMCAL 2005 Myrtle Beach, SC, USA, October 19th, 2005 Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD E. Reinhold, C. Steuer VON ARDENNE Anlagentechnik GmbH, Dresden, Germany

More information

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Materials Transactions, Vol. 44, No. 3 (2003) pp. 389 to 395 #2003 The Japan Institute of Metals An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Rongguang

More information

INFLUENCE OF TiO2 THIN FILM ANNEALING TEMPERATURE ON ELECTRICAL PROPERTIES SYNTHESIZED BY CVD TECHNIQUE

INFLUENCE OF TiO2 THIN FILM ANNEALING TEMPERATURE ON ELECTRICAL PROPERTIES SYNTHESIZED BY CVD TECHNIQUE INFLUENCE OF TiO2 THIN FILM ANNEALING TEMPERATURE ON ELECTRICAL PROPERTIES SYNTHESIZED BY CVD TECHNIQUE F. N. Mohamed, M. S. A. Rahim, N. Nayan, M. K. Ahmad, M. Z. Sahdan and J. Lias Faculty of Electrical

More information

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch Chapter 1.6 I - Substrate Specifications Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table Diameter 100 mm 4-inch 150 mm 6-inch Thickness 525 µm 20.5 mils 675

More information

Thin Films & AR Coated. Viewports. Thin Film & AR Coated. Viewports

Thin Films & AR Coated. Viewports. Thin Film & AR Coated. Viewports Thin Films & AR Item Page Thin Film Coatings Introduction P 02 Kodial Zero Length with Anti-Reflective Coatings P 04 Kodial Zero Length with Anti-Reflective Coatings-Non-Magnetic P 07 Kodial Zero Length

More information

EuNiO 3. thin films- growth and characterization. Home Search Collections Journals About Contact us My IOPscience

EuNiO 3. thin films- growth and characterization. Home Search Collections Journals About Contact us My IOPscience Home Search Collections Journals About Contact us My IOPscience thin films- growth and characterization This content has been downloaded from IOPscience. Please scroll down to see the full text. 2011 J.

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices

Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices Materials 2012, 5, 1413-1438; doi:10.3390/ma5081413 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for

More information

Utilizing Glow Discharge in Optical Emission Spectroscopy

Utilizing Glow Discharge in Optical Emission Spectroscopy Frequently Asked Questions Utilizing Glow Discharge in Optical Emission Spectroscopy Introduction For over 70 years, industries around the world have trusted LECO Corporation to deliver technologically

More information

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Faculty of Physical Engineering Departments physics of metals 1 Student

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Citation JOURNAL OF APPLIED PHYSICS (1995),

Citation JOURNAL OF APPLIED PHYSICS (1995), Title Copper nitride thin films prepared sputtering Author(s) MARUYAMA, T; MORISHITA, T Citation JOURNAL OF APPLIED PHYSICS (1995), Issue Date 1995-09-15 URL http://hdl.handle.net/2433/43537 Copyright

More information

EFFECT OF DEPOSITION TIME ON CHEMICAL BATH DEPOSITION PROCESS AND THICKNESS OF BaSe THIN FILMS.

EFFECT OF DEPOSITION TIME ON CHEMICAL BATH DEPOSITION PROCESS AND THICKNESS OF BaSe THIN FILMS. Journal of Optoelectronics and Biomedical Materials Vol. 3 Issue 4, October-December 2011 p. 81-85 EFFECT OF DEPOSITION TIME ON CHEMICAL BATH DEPOSITION PROCESS AND THICKNESS OF BaSe THIN FILMS. N.A. OKEREKE

More information

Soft silicon anodes for lithium ion batteries

Soft silicon anodes for lithium ion batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Soft silicon anodes for lithium ion batteries Qizhen

More information

Materials Characterization

Materials Characterization Materials Characterization C. R. Abernathy, B. Gila, K. Jones Cathodoluminescence (CL) system FEI Nova NanoSEM (FEG source) with: EDAX Apollo silicon drift detector (TE cooled) Gatan MonoCL3+ FEI SEM arrived

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Nickel-induced crystallization of amorphous silicon

Nickel-induced crystallization of amorphous silicon University of Arkansas, Fayetteville ScholarWorks@UARK Mechanical Engineering Undergraduate Honors Theses Mechanical Engineering 5-2009 Nickel-induced crystallization of amorphous silicon Robert Fleming

More information

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 623-628 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland Grain Sizes and Surface Roughness in Platinum

More information

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES 10.1149/1.2794473, The Electrochemical Society PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES S. Yim a, C. Bonhôte b, J. Lille b, and T. Wu b a Dept. of Chem. and Mat. Engr., San

More information

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using Supporting Information Low temperature synthesis of silicon carbide nanomaterials using solid-state method Mita Dasog, Larissa F. Smith, Tapas K. Purkait and Jonathan G. C. Veinot * Department of Chemistry,

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

Evaporated aluminum on polypropylene: oxide layer thicknesses as a function of oxygen plasma treatment level

Evaporated aluminum on polypropylene: oxide layer thicknesses as a function of oxygen plasma treatment level Evaporated aluminum on polypropylene: oxide layer thicknesses as a function of oxygen plasma treatment level Donald J. McClure, Acuity Consulting and Training and 3M Corporate Research Laboratory Carolin

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

Multilayer Development for Extreme Ultraviolet and Shorter Wavelength Lithography

Multilayer Development for Extreme Ultraviolet and Shorter Wavelength Lithography Multilayer Development for Extreme Ultraviolet and Shorter Wavelength Lithography Eric Louis 1, Igor Makhotkin 1, Erwin Zoethout 1, Stephan Müllender 2 and Fred Bijkerk 1,3 1 FOM Institute for Plasma Physics

More information

E-Beam Coating Technology for EUVL Optics

E-Beam Coating Technology for EUVL Optics E-Beam Coating Technology for EUVL Optics Eric Louis, Andrey Yakshin, Sebastian Oestreich, Peter Görts, Marc Kessels, Edward Maas and Fred Bijkerk Institute Rijnhuizen, Nieuwegein, The Netherlands Stephan

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research 1. The structure and property of sample and methods

More information

INFLUENCE OF THICKNESS VARIATION ON THE OPTICAL PROPERTIES OF ZnO THIN FILMS PREPARED BY THERMAL EVAPORATION METHOD

INFLUENCE OF THICKNESS VARIATION ON THE OPTICAL PROPERTIES OF ZnO THIN FILMS PREPARED BY THERMAL EVAPORATION METHOD Journal of Electron Devices, Vol. 0, 20, pp. 448-455 JED [ISSN: 682-3427 ] INFLUENCE OF THICKNESS VARIATION ON THE OPTICAL PROPERTIES OF ZnO THIN FILMS PREPARED BY THERMAL EVAPORATION METHOD Farzana Chowdhury

More information

Thermochromic halide perovskite solar cells

Thermochromic halide perovskite solar cells SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41563-017-0006-0 In the format provided by the authors and unedited. Thermochromic halide perovskite solar cells Jia Lin 1,2,3, Minliang Lai

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

Processing guidelines. Negative Tone Photoresist Series ma-n 2400

Processing guidelines. Negative Tone Photoresist Series ma-n 2400 Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

O2 Plasma Damage and Dielectric Recoveries to Patterned CDO Low-k Dielectrics

O2 Plasma Damage and Dielectric Recoveries to Patterned CDO Low-k Dielectrics O2 Plasma Damage and Dielectric Recoveries to Patterned CDO Low-k Dielectrics H. Huang 1, J. Bao 1, H. Shi 1, P. S. Ho 1, M L McSwiney 2, M D Goodner 2, M Moinpour 2, and G M Kloster 2 1 Laboratory for

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

The first measurement will be performed with a sample temperature of 35 by executing the following steps:

The first measurement will be performed with a sample temperature of 35 by executing the following steps: Work Instructions The experimental procedure of this practical is subdivided into two parts. In one part, a phase diagram of DEPE lipids is scanned through different temperatures, where a phase transition

More information