5 Function of Globular Proteins; and now. the exciting stuff!

Size: px
Start display at page:

Download "5 Function of Globular Proteins; and now. the exciting stuff!"

Transcription

1 5 Function of Globular Proteins; and now the exciting stuff!

2 CHAPTER 5: Function of Globular Proteins Key topics in protein function: Reversible binding of ligands is essential Specificity of ligands and binding sites Ligand binding is often coupled to conformational changes, sometimes quite dramatic (Induced Fit) In multisubunit proteins, conformational changes in one subunit can affect the others (Cooperativity) Interactions can be regulated Illustrated examples by: Hemoglobin (Hb) antibodies (Ab), and muscle contraction

3 Interaction with Other Molecules Reversible, transient process of chemical equilibrium: A + B AB A molecule that binds to a protein is called a ligand Typically a small molecule A region in the protein where the ligand binds is called the binding site Ligand binds via same noncovalent forces that dictate protein structure (see Chapter 4) Allows the interactions to be transient

4 Binding: Quantitative Description Consider a process in which a ligand (L) binds reversibly to a site in a protein (P) P + L k a k d PL The kinetics of such a process is described by: the association rate constant k a or the dissociation rate constant k d After some time, the process will reach the equilibrium where the association and dissociation rates are equal The equilibrium composition is characterized by the equilibrium constant K a k a K [ P] [L] kd[pl] a [PL] [P] [L] k k a d

5 Binding: Analysis in Terms of the Bound Fraction In practice, we can often determine the fraction of occupied binding sites (θ) Substituting [PL] with K a [L][P], we ll eliminate [PL] Eliminating [P] and rearranging gives the result in terms of equilibrium assoc. constant In terms of the more commonly used equilibrium dissoc. constant [PL] [PL] [P] K a Ka[L][P] [L][P] [P] [L] 1 [L] K a [L] [L] K d

6 Binding: Graphical Analysis The fraction of bound sites depends on the free ligand concentration and K d Experimentally Ligand concentration is known K d can be determined graphically or via least-squares regression Graphical representations of ligand binding. The fraction of ligand-binding sites occupied, θ, is plotted against the concentration of free ligand. Both curves are rectangular hyperbolas. (a) A hypothetical binding curve for a ligand L. The [L] at which half of the available ligand-binding sites are occupied is equivalent to 1/K a, or K d. The curve has a horizontal asymptote at θ = 1 and a vertical asymptote (not shown) at [L] = 1/K a. [L] [L] K d [L] [L] total

7 Example: Oxygen Binding to Myoglobin When ligand is a gas, binding is expressed in terms of partial pressures. [L] Kd [L] p 50 po2 po 2

8 For previous slide: Myoglobin. The eight α-helical segments (shown here as cylinders) are labeled A through H. Nonhelical residues in the bends that connect them are labeled AB, CD, EF, and so forth, indicating the segments they interconnect. A few bends, including BC and DE, are abrupt and do not contain any residues; these are not normally labeled. (The short segment visible between D and E is an artifact of the computer representation.) The heme is bound in a pocket made up largely of the E and F helices, although amino acid residues from other segments of the protein also participate. Graphical representations of ligand binding. The fraction of ligand-binding sites occupied, θ, is plotted against the concentration of free ligand. Both curves are rectangular hyperbolas. (b) A curve describing the binding of oxygen to myoglobin. The partial pressure of O 2 in the air above the solution is expressed in kilopascals (kpa). Oxygen binds tightly to myoglobin, with a P 50 of only 0.26 kpa.

9 Binding: Thermodynamic Connections Interaction strength can be expressed as association (binding) constant K a, units M -1 dissociation constant K d, units M, K d = 1/K a interaction (binding) free energy G o, units: kj/mol Definitions G o = H o -T S o : enthalpy and entropy K a = [PL]/[P][L] K d = [P][L]/[PL] Relationships G o = -RT ln K a = RT ln K d (RT at 25 o C is 2.48 kj/mol) Magnitudes Strong binding: K d < 10 nm Weak binding: K d > 10 M

10 Examples of Binding Strength

11 Specificity: Lock-and-Key Model Proteins typically have high specificity: only certain ligands bind High specificity can be explained by the complementary of the binding site and the ligand. Complementary in size, shape, charge, or hydrophobic/hydrophilic character Lock and Key model by Emil Fisher (1894) assumes that complementary surfaces are preformed. +

12 Specificity: Induced Fit Conformational changes may occur upon ligand binding (Daniel Koshland in 1958) This adaptation is called the induced fit Induced fit allows for tighter binding of the ligand Induced fit allows for high affinity for different ligands Both the ligand and the protein can change their conformations +

13 Globins are oxygen-binding proteins Protein side chains lack affinity for O 2 Some transition metals bind O 2 well but would generate free radicals if free in solution Organometallic compounds such as heme are more suitable, but Fe 2+ in free heme could be oxidized to Fe 3+ Solution Capture the oxygen molecule with heme that is protein bound Myoglobin is the main oxygen storage protein Hemoglobin is a circulating oxygen-binding protein

14 Structures of Porphyrin and Heme Heme. The heme group is present in myoglobin, hemoglobin, and many other proteins, designated heme proteins. Heme consists of a complex organic ring structure, protoporphyrin IX, with a bound iron atom in its ferrous (Fe 2+ ) state. (a) Porphyrins, of which protoporphyrin IX is only one example, consist of four pyrrole rings linked by methene bridges, with substitutions at one or more of the positions denoted X. (b, c) Two representations of heme (derived from PDB ID 1CCR). The iron atom of heme has six coordination bonds: four in the plane of, and bonded to, the flat porphyrin ring system, and (d) two perpendicular to it.

15 Structure of Myoglobin. The eight α-helical segments (shown here as cylinders) are labeled A through H. Nonhelical residues in the bends that connect them are labeled AB, CD, EF, and so forth, indicating the segments they interconnect. A few bends, including BC and DE, are abrupt and do not contain any residues; these are not normally labeled. (The short segment visible between D and E is an artifact of the computer representation.) The heme is bound in a pocket made up largely of the E and F helices, although amino acid residues fromother segments of the protein also participate. The heme group viewed from the side. This view shows the two coordination bonds to Fe 2+ that are perpendicular to the porphyrin ring system. One is occupied by a His residue, sometimes called the proximal His; the other is the binding site for oxygen. The remaining four coordination bonds are in the plane of, and bonded to, the flat porphyrin ring system.

16 Binding of Carbon Monoxide CO has similar size and shape to O 2 ; it can fit to the same binding site CO binds over 20,000 times better than O 2 because the carbon in CO has a filled lone electron pair that can be donated to vacant d-orbitals on the Fe 2+ Protein pocket decreases affinity for CO, but it still binds about 250 times better than oxygen CO is highly toxic as it competes with oxygen. It blocks the function of myoglobin, hemoglobin, and mitochondrial cytochromes that are involved in oxidative phosphorylation

17 CO vs. O 2 Binding to Free Heme Steric effects caused by ligand binding to the heme of myoglobin. (a) Oxygen binds to heme with the O 2 axis at an angle, a binding conformation readily accommodated by myoglobin. (b) Carbon monoxide binds to free heme with the CO axis perpendicular to the plane of the porphyrin ring. When binding to the heme in myoglobin, CO is forced to adopt a slight angle because the perpendicular arrangement is sterically blocked by His E7, the distal His. This effect weakens the binding of CO to myoglobin.

18 Heme binding to protein affects O 2 binding. Steric effects caused by ligand binding to the heme of myoglobin. (c) Another view of the heme of myoglobin, showing the arrangement of key amino acid residues around the heme. The bound O 2 is hydrogen-bonded to the distal His, His E7 (His 64 ), further facilitating the binding of O 2.

19 Could myoglobin transport O 2? po 2 in lungs is about 13 kpa: it sure binds oxygen well po 2 in tissues is about 4 kpa: it will not release it! Would lowering the affinity (P 50 ) of myoglobin to oxygen help? Graphical representations of ligand binding. The fraction of ligandbinding sites occupied, θ, is plotted against the concentration of free ligand. Both curves are rectangular hyperbolas. (b) A curve describing the binding of oxygen to myoglobin. The partial pressure of O 2 in the air above the solution is expressed in kilopascals (kpa). Oxygen binds tightly to myoglobin, with a P 50 of only 0.26 kpa.

20 For effective transport affinity must vary with po 2 A sigmoid (cooperative) binding curve. A sigmoid binding curve can be viewed as a hybrid curve reflecting a transition from a low-affinity to a high-affinity state. Because of its cooperative binding, as manifested by a sigmoid binding curve, hemoglobin is more sensitive to the small differences in O 2 concentration between the tissues and the lungs, allowing it to bind oxygen in the lungs (where po 2 is high) and release it in the tissues (where po 2 is low).

21 How can affinity to oxygen change? Must be a protein with multiple binding sites Binding sites must be able to interact with each other This phenomenon is called cooperativity positive cooperativity first binding event increases affinity at remaining sites recognized by sigmoidal binding curves negative cooperativity first binding event reduces affinity at remaining sites

22 The Hill Plot of Cooperativity Hill plots for oxygen binding to myoglobin and hemoglobin. When n H 5 1, there is no evident cooperativity. The maximum degree of cooperativity observed for hemoglobin corresponds approximately to n H 5 3. Note that while this indicates a high level of cooperativity, n H is less than n, the number of O 2 -binding sites in hemoglobin. This is normal for a protein that exhibits allosteric binding behavior.

23 Two Models of Cooperativity: Concerted vs.sequential Two general models for the interconversion of inactive and active forms of a protein during cooperative ligand binding. Although the models may be applied to any protein including any enzyme that exhibits cooperative binding, we show here four subunits because the model was originally proposed for hemoglobin. (a) In the concerted, or all-or-none, model (MWC model), all subunits are postulated to be in the same conformation, either all (low affinity or inactive) or all (high affinity or active). Depending on the equilibrium, K eq, between and forms, the binding of one or more ligand molecules (L) will pull the equilibrium toward the form. Subunits with bound L are shaded. (b) In the sequential model, each individual subunit can be in either the or form. A very large number of conformations is thus possible.

24 Cooperativity is a special case of allosteric regulation Allosteric protein Binding of a ligand to one site affects the binding properties of a different site, on the same protein Can be positive or negative Homotropic Normal ligand of the protein is the allosteric regulator Heterotropic Different ligand affects binding of the normal ligand Cooperativity = positive homotropic regulation

25 Hb binds oxygen cooperatively Hb is a tetramer of two subunits (a2b2) Each subunit is similar to mb

26 Sequence Similarity between Hemoglobin and Myoglobin

27 For previous slide; The amino acid sequences of whale myoglobin and the α and β chains of human hemoglobin. Dashed lines mark helix boundaries. To align the sequences optimally, short gaps must be introduced into both Hb sequences where a few amino acids are present in the other, compared sequences. With the exception of the missing D helix in Hbα, this alignment permits the use of the helix lettering convention that emphasizes the common positioning of amino acid residues that are identical in all three structures (shaded). Residues shaded in pink are conserved in all known globins. Note that the common helix-letterand- number designation for amino acids does not necessarily correspond to a common position in the linear sequence of amino acids in the polypeptides. For example, the distal His residue is His E7 in all three structures, but corresponds to His 64, His 58, and His 63 in the linear sequences of Mb, Hbα, and Hbβ, respectively. Nonhelical residues at the amino and carboxyl termini, beyond the first (A) and last (H) α-helical segments, are labeled NA and HC, respectively.

28 Where we left off TUESDAY

29 Subunit Interactions in Hb Dominant interactions between hemoglobin subunits. In this representation, α subunits are light and β subunits are dark. The strongest subunit interactions (highlighted) occur between unlike subunits. When oxygen binds, the α 1 β 1 contact changes little, but there is a large change at the α 1 β 2 contact, with several ion pairs broken.

30 Subunit Interactions: Details; Some ion pairs that stabilize the T state of deoxyhemoglobin. (a) Close-up view of a portion of a deoxyhemoglobin molecule in the T state. Interactions between the ion pairs His HC3 and Asp FG1 of the β subunit (blue) and between Lys C5 of the α subunit (gray) and His HC3 (its α-carboxyl group) of the β subunit are shown with dashed lines. (Recall that HC3 is the carboxyl-terminal residue of the β subunit.)

31 Subunit Interactions: Details; Some ion pairs that stabilize the T state of deoxyhemoglobin. (b) Interactions between these ion pairs, and between others not shown in (a), are schematized in this representation of the extended polypeptide chains of hemoglobin.

32 R and T States of Hb T = Tense state, More interactions, more stable Lower affinity for O 2 R = Relaxed state, Fewer Interactions, more flexible Higher affinity for O 2 O 2 binding triggers a T R conformational change Conformational change from the T state to the R state involves breaking ion pairs between the α1-2 interface

33 R and T States of Hemoglobin The T R transition. In these depictions of deoxyhemoglobin, as in Figure 5 9, the β subunits are blue and the α subunits are gray. Positively charged side chains and chain termini involved in ion pairs are shown in blue, their negatively charged partners in red. The Lys C5 of each α subunit and Asp FG1 of each β subunit are visible but not labeled. Note that the molecule is oriented slightly differently than in Figure 5 9. The transition from the T state to the R state shifts the subunit pairs substantially, affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion pairs. Another dramatic result of the T R transition is a narrowing of the pocket between the β subunits.

34 Conformational change is triggered by oxygen binding Changes in conformation near heme on O 2 binding to deoxyhemoglobin. The shift in the position of helix F when heme binds O 2 is thought to be one of the adjustments that triggers the T R transition.

35 ph Effect on O 2 Binding to Hb Actively metabolizing tissues generate H +, lowering the ph of the blood near the tissues relative to the lungs Hb Affinity for oxygen depends on the ph H + binds to Hb and stabilizes the T state Protonates His146 which then forms a salt bridge with Asp94 Leads to the release of O 2 (in the tissues) The ph difference between lungs and metabolic tissues increases efficiency of the O 2 transport This is known as the Bohr effect

36 Effect of ph on oxygen binding to hemoglobin. The ph of blood is 7.6 in the lungs and 7.2 in the tissues. Experimental measurements on hemoglobin binding are often performed at ph 7.4. ph Effect on O 2 Binding to Hb

37 Hb and CO 2 Export CO 2 is produced by metabolism in tissues and must be exported 15 20% of CO 2 is exported in the form of a carbamate on the amino terminal residues of each of the polypeptide subunits. Notice: the formation of a carbamate yields a proton which can contribute to the Bohr Effect the carbamate forms additional salt bridges stabilizing the T state The rest of the CO 2 is exported as dissolved bicarbonate Formed by carbonic anhydrase, and also producing a proton

38 2,3-Bisphosphoglycerate regulates O 2 binding Negative heterotropic regulator of Hb function Present at mm concentrations in erythrocytes Produced from an intermediate in glycolysis Small negatively charged molecule, binds to the positively charged central cavity of Hb Stabilizes the T states

39 2,3-BPG binds to the central cavity of Hb Binding of BPG to deoxyhemoglobin. (a) BPG binding stabilizes the T state of deoxyhemoglobin. The negativecharges of BPG interact with several positively charged groups (shown in blue in this surface contour image) that surround the pocket between the β subunits on the surface of deoxyhemoglobin in the T state. (b) The binding pocket for BPG disappears on oxygenation, following transition to the R state. (Compare Fig )

40 2,3-BPG allows for O 2 release in the tissues and adaptation to changes in altitude Effect of BPG on oxygen binding to hemoglobin. The BPG concentration in normal human blood is about 5 mm at sea level and about 8 mm at high altitudes. Note that hemoglobin binds to oxygen quite tightly when BPG is entirely absent, and the binding curve seems to be hyperbolic. In reality, the measured Hill coefficient for O 2 -binding cooperativity decreases only slightly (from 3 to about 2.5) when BPG is removed from hemoglobin, but the rising part of the sigmoid curve is confined to a very small region close to the origin. At sea level, hemoglobin is nearly saturated with O 2 in the lungs, but just over 60% saturated in the tissues, so the amount of O 2 released in the tissues is about 38% of the maximum that can be carried in the blood. At high altitudes, O 2 delivery declines by about one-fourth, to 30% of maximum. An increase in BPG concentration, however, decreases the affinity of hemoglobin for O 2, so approximately 37% of what can be carried is again delivered to the tissues.

41 Spectroscopic Detection of Oxygen Binding to Myoglobin The heme group is a strong chromophore that absorbs both in ultraviolet and visible range Ferrous form (Fe 2+ ) without oxygen has an intense Soret band at 429 nm Oxygen binding alters the electronic properties of the heme, and shifts the position of the Soret band to 414 nm Binding of oxygen can be monitored by UV-Vis spectrophotometry Deoxyhemoglobin (in venous blood) appears purplish in color and oxyhemoglobin (in arterial blood) is red

42 Sickle-cell anemia is due to a mutation in hemoglobin Glu6 Val in the chain of Hb The new Valine side chain can bind to a different Hb molecule to form a strand This sickles the red blood cells Untreated homozygous individuals generally die in childhood Heterozygous individuals exhibit a resistance to malaria

43 Formation of Hb Strands in Sickle-Cell Anemia Normal and sickle-cell hemoglobin. (a) Subtle differences between the conformations of hemoglobin A and hemoglobin S result from a single amino acid change in the β chains. (b) As a result of this change, deoxyhemoglobin S has a hydrophobic patch on its surface, which causes the molecules to aggregate into strands that align into insoluble fibers.

44 Two Types of Immune Systems Cellular immune system - targets own cells that have been infected - also clears up virus particles and infecting bacteria - key players: Macrophages, killer T cells (T c ), and inflammatory T cells (TH 1 ) Humoral fluid immune system - targets extracellular pathogens - can also recognize foreign proteins - makes soluble antibodies - keeps memory of past infections - key players: B-lymphocytes and helper T-cells (TH 2 )

45 Cellular Immune System Antibodies bind to fragments displayed on the surface of invading cells Phagocytes: specialized cells that eat invaders Macrophages: large phagocytes that ingest bacteria that are tagged by antibodies

46 Humoral Immune System Vertebrates also fight infections with soluble antibodies that specifically bind antigens Antigens are substances that stimulate production of antibodies Typically macromolecular in nature Recognized as foreign by the immune system Coat proteins of bacteria and viruses Surface carbohydrates of cells or viruses Antibodies are proteins that are produced by B cells and specifically bind to antigens Binding will mark the antigen for destruction or interfere with its function A given antibody will bind to a small region (epitope) of the antigen One antigen can have several epitopes

47 Antibodies: Immunoglobulin G Composed of two heavy chains and two light chains Composed of constant domains and variable domains Light chains: one constant and one variable domain Heavy chains: three constant and one variable domain Variable domains of each chain make up antigenbinding site (two/antibody) Variable domains contain regions that are hypervariable (specifically the antigen-binding site) Confers high antigen specificity

48 Antibodies: Immunoglobulin G Immunoglobulin G. (a) Pairs of heavy and light chains combine to form a Y-shaped molecule. Two antigenbinding sites are formed by the combination of variable domains from one light (V L ) and one heavy (V H ) chain. Cleavage with papain separates the Fab and Fc portions of the protein in the hinge region. The Fc portion of the molecule also contains bound carbohydrate (shown in (b)).

49 Antibodies: Immunoglobulin G A ribbon model of the first complete IgG molecule to be crystallized and structurally analyzed. Although the molecule has two identical heavy chains (two shades of blue) and two identical light chains (two shades of red), it crystallized in the asymmetric conformation shown here. Conformational flexibility may be important to the function of immunoglobulins.

50 Antigens bind via induced fit; Antigen binding causes significant structural changes to the antibody Induced fit in the binding of an antigen to IgG. The molecule here, shown in surface contour, is the Fab fragment of an IgG. The antigen is a small peptide derived from HIV. Two residues in the heavy chain (blue) and one in the light chain (red) are colored to provide visual points of reference. (a) View of the Fab fragment in the absence of antigen, looking down on the antigen-binding site. (b) The same view, but with the Fab fragment in the bound conformation; the antigen is omitted to provide an unobstructed view of the altered binding site. Note how the binding cavity has enlarged and several groups have shifted position. (c) The same view as (b), but with the antigen in the binding site, pictured as a red stick structure.

51

52

53 The BCR The membrane-bound form of an antibody may be called a surface immunoglobulin (sig) or a membrane immunoglobulin (mig). It is part of the B cell receptor (BCR), which allows a B cell to detect when a specific antigen is present in the body and triggers B cell activation. The BCR is composed of surface-bound IgD or IgM antibodies and associated Ig-α and Ig-β heterodimers, which are capable of signal transduction. A typical human B cell will have 50,000 to 100,000 antibodies bound to its surface. Upon antigen binding, they cluster in large patches, which can exceed 1 micrometer in diameter, on lipid rafts that isolate the BCRs from most other cell signaling receptors. These patches may improve the efficiency of the cellular immune response. In humans, the cell surface is bare around the B cell receptors for several hundred nanometers, which further isolates the BCRs from competing influences.

54 Antibody specificity is an important analytical reagent

55 Protein Interactions Modulated by Chemical Energy Use of chemical energy (ATP) can cause conformational changes in proteins, generally required for their function Especially in motor proteins Control movement of cells and organelles within cells Allows for spatial and temporal regulation of interactions

56 Muscle Structure Muscle fiber: large, single, elongated, multinuclear cell Each fiber contains about 1,000 myofibrils Skeletal muscle. (a) Muscle fibers consist of single, elongated, multinucleated cells that arise from the fusion of many precursor cells. The fibers are made up of many myofibrils (only six are shown here for simplicity) surrounded by the membranous sarcoplasmic reticulum. The organization of thick and thin filaments in a myofibril gives it a striated appearance. When muscle contracts, the I bands narrow and the Z disks come closer together, as seen in electron micrographs of (b) relaxed and (c) contracted muscle.

57 Myofibrils contain thick filaments of myosin

58 Myofibrils contain thin filaments of actin

59 Myosin thick filaments slide along actin thin filaments

60 Myosin thick filaments slide along actin thin filaments

61 From previous slide 5-29b,c Skeletal muscle. (a) Muscle fibers consist of single, elongated, multinucleated cells that arise from the fusion of many precursor cells. The fibers are made up of many myofibrils (only six are shown here for simplicity) surrounded by the membranous sarcoplasmic reticulum. The organization of thick and thin filaments in a myofibril gives it a striated appearance. When muscle contracts, the I bands narrow and the Z disks come closer together, as seen in electron micrographs of (b) relaxed and (c) contracted muscle. FIGURE 5 30a Muscle contraction. Thick filaments are bipolar structures created by the association of many myosin molecules. (a) Muscle contraction occurs by the sliding of the thick and thin filaments past each other so that the Z disks in neighboring I bands draw closer together.

62 Actomyosin Cycle Muscle contraction occurs through a series of conformational changes to protein structure due to binding, hydrolysis, and release of ATP and ADP Cycle has four steps 1. ATP binds to myosin myosin dissociates from actin 2. ATP is hydrolyzed a conformational change of myosin 3. Myosin re-connects to the actin filament at a different location release of Pi 4. Release of Pi Power stroke where myosin returns to initial state; shifting actin filament relative to the myosin tail release of ADP

63 Actomyosin Cycle Molecular mechanism of muscle contraction. Conformational changes in the myosin head that are coupled to stages in the ATP hydrolytic cycle cause myosin to successively dissociate from one actin subunit, then associate with another farther along the actin filament. In this way the myosin heads slide along the thin filaments, drawing the thick filament array into the thin filament array (see Figure 5-30).

64 Regulation of muscle contraction Availability of myosin-binding sites on actin is regulated by troponin and tropomyosin avoids continuous muscle contraction Nerve impulse triggers release of Ca 2+ Causes conformational changes to tropomyosin-troponin complex exposing myosin-binding sites

65 From pervious slide Regulation of muscle contraction by tropomyosin and troponin. Tropomyosin and troponin are bound to F-actin in the thin filaments. In the relaxed muscle, these two proteins are arranged around the actin filaments so as to block the binding sites for myosin. Tropomyosin is a two-stranded coiled coil of α helices, the same structural motif as in α-keratin (see Fig ). It forms head-to-tail polymers twisting around the two actin chains. Troponin is attached to the actin-tropomyosin complex at regular intervals of 38.5 nm. Troponin consists of three different subunits: I, C, and T. Troponin I prevents binding of the myosin head to actin; troponin C has a binding site for Ca 2+ ; and troponin T links the entire troponin complex to tropomyosin. When the muscle receives a neural signal to initiate contraction, Ca 2+ is released from the sarcoplasmic reticulum (see Fig. 5 29a) and binds to troponin C. This causes a conformational change in troponin C, which alters the positions of troponin I and tropomyosin so as to relieve the inhibition by troponin I and allow muscle contraction.

66 In the words of Porky Pig, That s all folks!

2013 W. H. Freeman and Company. 5 Function of Globular Proteins

2013 W. H. Freeman and Company. 5 Function of Globular Proteins 2013 W. H. Freeman and Company 5 Function of Globular Proteins CHAPTER 5: Function of Globular Proteins Key topics in protein function: Reversible binding of ligands is essential Specificity of ligands

More information

ANTIBODIES. Agents of Immunity

ANTIBODIES. Agents of Immunity ANTIBODIES Agents of Immunity - Antibodies are: The Organization What are they? Protective agents of the immune system Neutralize foreign agents called antigens Essential part of the Adaptive Immune System

More information

Proteins the primary biological macromolecules of living organisms

Proteins the primary biological macromolecules of living organisms Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt

More information

Proteins Higher Order Structures

Proteins Higher Order Structures Proteins Higher Order Structures Dr. Mohammad Alsenaidy Department of Pharmaceutics College of Pharmacy King Saud University Office: AA 101 msenaidy@ksu.edu.sa Previously on PHT 426!! Protein Structures

More information

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors Chapter 4 Antigen Recognition by B-cell and T-cell Receptors Antigen recognition by BCR and TCR B cells 2 separate functions of immunoglobulin (Ig) bind pathogen & induce immune responses recruit cells

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa Immunoglobulins Immunoglobulin (Ig) has a common name which is "Antibody (Ab)", but actually we should say Ig, why? Because the proteins, which are involved, are actually globular proteins "known as globulins"

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Introduction to Proteins

Introduction to Proteins Introduction to Proteins Lecture 4 Module I: Molecular Structure & Metabolism Molecular Cell Biology Core Course (GSND5200) Matthew Neiditch - Room E450U ICPH matthew.neiditch@umdnj.edu What is a protein?

More information

Immunoglobulins. Harper s biochemistry Chapter 49

Immunoglobulins. Harper s biochemistry Chapter 49 Immunoglobulins Harper s biochemistry Chapter 49 Immune system Detects and inactivates foreign molecules, viruses, bacteria and microorganisms Two components with 2 strategies B Lymphocytes (humoral immune

More information

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function Chapter 4. Immunoglobulin Structure and Function. Functional Regions. Types of chains. Constant & Variable regions 4. Glycoprotein * * * Heavy chain= 446 aa Light chain= 4aa Each heavy and light chain

More information

Diversity of proteins

Diversity of proteins BCMB 3100: Partial notes Chapter 4 (Part 1) Diversity of proteins 3D structure of proteins Fibrous vs globular proteins Conformation vs configuration 1, 2, 3 and 4 structure Peptide groups in polypeptide

More information

Protein homology. Antigens & Antibodies I. Administrative issues:

Protein homology. Antigens & Antibodies I. Administrative issues: Administrative issues: Recommended text: Goldsby/Kuby Immunology, 6th edition (Note that Innate Immunity is not adequately covered in the 5th edition.) Text book reading assignments are to supplement the

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Chapter 2. Antibodies

Chapter 2. Antibodies Chapter 2. Antibodies An iddy-biddy antibody Just nanometers long Saved the butt of a sumo man Hundreds of kilos strong Anonymous The main elements of the immune system are firstly antibodies, secondly

More information

Hmwk # 8 : DNA-Binding Proteins : Part II

Hmwk # 8 : DNA-Binding Proteins : Part II The purpose of this exercise is : Hmwk # 8 : DNA-Binding Proteins : Part II 1). to examine the case of a tandem head-to-tail homodimer binding to DNA 2). to view a Zn finger motif 3). to consider the case

More information

Blood is 55% Plasma (Liquid)

Blood is 55% Plasma (Liquid) Blood is 55% Plasma (Liquid) The plasma portion of blood is: 91% Water Maintains blood volume Transports molecules 7% Proteins (ie: clotting proteins, albumin, immunoglobulins ) 2 % Salts, gases (O 2,

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

H zone narrows; light band narrows; outer darker regions of A / dark band widen; 2 max

H zone narrows; light band narrows; outer darker regions of A / dark band widen; 2 max M. (a) (i) A / dark band is mainly due to myosin filaments; H zone only myosin filaments; darker band has both types of filament; light band has only actin filaments; max H zone narrows; light band narrows;

More information

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament

BME Engineering Molecular Cell Biology. The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME 42-620 Engineering Molecular Cell Biology Lecture 09: The Cytoskeleton (I): Actin The Cytoskeleton (II): Microtubule & Intermediate Filament BME42-620 Lecture 09, September 27, 2011 1 Outline Overviewofcytoskeletal

More information

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology 6- Important Molecules of Living Systems Proteins Nucleic Acids Taft College Human Physiology Proteins Proteins- made from: C, H, O, N, and S. Proteins are very large molecules composed of long chains

More information

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation?

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation? 1 Name MCB 150 Midterm Eam #1 (100 points total) Please write your full name on each page of the eam!! The eam consists of 17 questions (6 pages). Each has a different point count as indicated. Please

More information

From DNA to Protein Structure and Function

From DNA to Protein Structure and Function STO-106 From DNA to Protein Structure and Function Teacher information Summary: Students model how information in the DNA base sequences is transcribed and translated to produce a protein molecule. They

More information

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004 CSE 397-497: Computational Issues in Molecular Biology Lecture 19 Spring 2004-1- Protein structure Primary structure of protein is determined by number and order of amino acids within polypeptide chain.

More information

Antibody Structure. Antibodies

Antibody Structure. Antibodies Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Antibody Structure supports Function

Antibody Structure supports Function Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1

Bi 8 Lecture 7. Ellen Rothenberg 26 January Reading: Ch. 3, pp ; panel 3-1 Bi 8 Lecture 7 PROTEIN STRUCTURE, Functional analysis, and evolution Ellen Rothenberg 26 January 2016 Reading: Ch. 3, pp. 109-134; panel 3-1 (end with free amine) aromatic, hydrophobic small, hydrophilic

More information

PROTEINS & NUCLEIC ACIDS

PROTEINS & NUCLEIC ACIDS Chapter 3 Part 2 The Molecules of Cells PROTEINS & NUCLEIC ACIDS Lecture by Dr. Fernando Prince 3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life We have already learned that

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

SDS-PAGE and Western Blot. Molecular Basis of Evolution

SDS-PAGE and Western Blot. Molecular Basis of Evolution 1 SDS-PAGE and Western Blot Molecular Basis of Evolution Homology high level of DNA and protein sequence similarity due to common ancestry. Evidence Genomes of related organisms are very similar. Even

More information

Protein Folding Problem I400: Introduction to Bioinformatics

Protein Folding Problem I400: Introduction to Bioinformatics Protein Folding Problem I400: Introduction to Bioinformatics November 29, 2004 Protein biomolecule, macromolecule more than 50% of the dry weight of cells is proteins polymer of amino acids connected into

More information

MOLECULAR RECOGNITION

MOLECULAR RECOGNITION MOLECULAR RECOGNITION Bioanalytical Methods Classification 1. Biassay: molecular recognition, signal generation and detection in solution or on inert solid phase 2. Biosensor: molecular recognition system

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

1. The microtubule wall is composed of globular proteins arranged in longitudinal rows called.

1. The microtubule wall is composed of globular proteins arranged in longitudinal rows called. Name: Quiz name: Quiz 7 ate: 1. The microtubule wall is composed of globular proteins arranged in longitudinal rows called. microfilaments protofilaments prototubules microtubular subunits 2. Which of

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *2249654089* BIOLOGY 9700/21 Paper 2 AS Level Structured Questions October/November 2016 1 hour 15 minutes

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

Supplementary Figure 1.

Supplementary Figure 1. Supplementary Figure 1. Assessment of quaternary structure of soluble RSV F proteins. Soluble variants of F proteins from A2 and B1 RSV strains were expressed in HEK293 cells. The cell culture supernatants

More information

Nature Structural & Molecular Biology: doi: /nsmb.2548

Nature Structural & Molecular Biology: doi: /nsmb.2548 Supplementary Figure 1. Structure of GltPhout. (a) Stereo view of a slice through a single GltPhout protomer shown in stick representation along with 2Fo-Fc and anomalous difference electron maps. The

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

IRON METABOLISM. Harper s Illustrated Biochemistry chapter 50

IRON METABOLISM. Harper s Illustrated Biochemistry chapter 50 IRON METABOLISM Harper s Illustrated Biochemistry chapter 50 IRON 26th element in the periodic table Chemical Symbol: Fe MW = 55.85 Electron Configuration: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 Fourth most

More information

Chapter 5: Nucleic Acids, etc.

Chapter 5: Nucleic Acids, etc. Chapter 5: Nucleic Acids, etc. Voet & Voet: Sections 1 & 3 Pages 82-84 & 88-93 Any introductory Biochemistry textbook will have an introductory chapter on nucleic acids Slide 1 Nucleotides and Derivatives

More information

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

BCH222 - Greek Key β Barrels

BCH222 - Greek Key β Barrels BCH222 - Greek Key β Barrels Reading C.I. Branden and J. Tooze (1999) Introduction to Protein Structure, Second Edition, pp. 77-78 & 335-336 (look at the color figures) J.S. Richardson (1981) "The Anatomy

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

Immunoglobulins: Structure and Function

Immunoglobulins: Structure and Function Immunoglobulins: Structure and Function Immunoglobulins:Structure and Function Definition: Glycoprotein molecules that are produced by plasma cells in response to an immunogen and which function as antibodies

More information

Ch 10 Molecular Biology of the Gene

Ch 10 Molecular Biology of the Gene Ch 10 Molecular Biology of the Gene For Next Week Lab -Hand in questions from 4 and 5 by TUES in my mailbox (Biology Office) -Do questions for Lab 6 for next week -Lab practical next week Lecture Read

More information

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος.

Τάσος Οικονόµου ιαλεξη 8. Kινηση, λειτουργια, ελεγχος. Τάσος Οικονόµου ιαλεξη 8 Kινηση, λειτουργια, ελεγχος http://ecoserver.imbb.forth.gr/bio321.htm εν ξεχνω. Cell The peptide bond Polypeptides are stabilized by: 1. Covalent bonds= amide bond 2. Noncovalent,

More information

Super Models. Deoxyribonucleic Acid (DNA) Molecular Model Kit. Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult

Super Models. Deoxyribonucleic Acid (DNA) Molecular Model Kit. Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult Super Models Deoxyribonucleic Acid (DNA) Molecular Model Kit Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult! Caution: Atom centers and vinyl tubing are a choking hazard. Do not eat

More information

Genes and Proteins in Health. and Disease

Genes and Proteins in Health. and Disease Genes and Health and I can describe the structure of proteins All proteins contain the chemical elements Carbon, Hydrogen, Oxygen and Nitrogen. Some also contain sulphur. Proteins are built from subunits

More information

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds

STRUCTURAL BIOLOGY. α/β structures Closed barrels Open twisted sheets Horseshoe folds STRUCTURAL BIOLOGY α/β structures Closed barrels Open twisted sheets Horseshoe folds The α/β domains Most frequent domain structures are α/β domains: A central parallel or mixed β sheet Surrounded by α

More information

Molecular Forces in Antibody Maturation*

Molecular Forces in Antibody Maturation* Molecular Forces in Antibody Maturation* Melik Demirel 1,2 1 Allen Pearce Assistant Professor, College of Engineering, The Pennsylvania State University, University Park, PA, USA, E-mail: mcd18@psu.edu

More information

Read and take notes on pages

Read and take notes on pages Protein Synthesis Read and take notes on pages 336-340 What is protein? Proteins Polypeptide chains of amino acids Are enzymes that catalyze biochemical reactions and are vital to metabolism. They have

More information

Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology

Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology Chapter 17: Immunization & Immune Testing 1. Immunization 2. Diagnostic Immunology 1. Immunization Chapter Reading pp. 505-511 What is Immunization? A method of inducing artificial immunity by exposing

More information

Immunology: Antibody Basics

Immunology: Antibody Basics e-learning JABSOM Immunology: Antibody Basics One :: General Structure Identify the Parts of an Antibody Two :: Isotypes Identify Antibody Isotypes Three :: Function Match Antibody Functions With Isotypes

More information

Chapter 15. Cytoskeletal Systems. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 15. Cytoskeletal Systems. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 15 Cytoskeletal Systems Lectures by Kathleen Fitzpatrick Simon Fraser University Table 15-1 - Microtubules Table 15-1 - Microfilaments Table 15-1 Intermediate Filaments Table 15-3 Microtubules

More information

Gene Expression - Transcription

Gene Expression - Transcription DNA Gene Expression - Transcription Genes are expressed as encoded proteins in a 2 step process: transcription + translation Central dogma of biology: DNA RNA protein Transcription: copy DNA strand making

More information

Supplementary Fig. S1. SAMHD1c has a more potent dntpase activity than. SAMHD1c. Purified recombinant SAMHD1c and SAMHD1c proteins (with

Supplementary Fig. S1. SAMHD1c has a more potent dntpase activity than. SAMHD1c. Purified recombinant SAMHD1c and SAMHD1c proteins (with Supplementary Fig. S1. SAMHD1c has a more potent dntpase activity than SAMHD1c. Purified recombinant SAMHD1c and SAMHD1c proteins (with concentration of 800nM) were incubated with 1mM dgtp for the indicated

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

Cells and Tissues. Overview CELLS

Cells and Tissues. Overview CELLS Cells and Tissues WIll The basic unit of structure and function in the human body is the cell. Each of a cell's parts, or organelles, as well as the entire cell, is organized to perform a specific function.

More information

Year III Pharm.D Dr. V. Chitra

Year III Pharm.D Dr. V. Chitra Year III Pharm.D Dr. V. Chitra 1 Genome entire genetic material of an individual Transcriptome set of transcribed sequences Proteome set of proteins encoded by the genome 2 Only one strand of DNA serves

More information

There was a reduction in number of new individuals being vaccinated / vaccine uptake was lower / higher number of babies; 1 [7]

There was a reduction in number of new individuals being vaccinated / vaccine uptake was lower / higher number of babies; 1 [7] 1. (a) Antibody binds/eq/recognises only to cancer cells; because of antibody-antigen binding/eg; enzyme activates the drug; at cancer cells only; max 3 B lymphocytes produce antibodies/involved in humoral

More information

DNA Binding Domains: Structural Motifs. Effector Domain. Zinc Fingers. Zinc Fingers, continued. Zif268

DNA Binding Domains: Structural Motifs. Effector Domain. Zinc Fingers. Zinc Fingers, continued. Zif268 DNA Binding Domains: Structural Motifs Studies of known transcription factors have found several motifs of protein design to allow sequence-specific binding of DNA. We will cover only three of these motifs:

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

Chromatographic Separation of the three forms of RNA Polymerase II.

Chromatographic Separation of the three forms of RNA Polymerase II. Chromatographic Separation of the three forms of RNA Polymerase II. α-amanitin α-amanitin bound to Pol II Function of the three enzymes. Yeast Pol II. RNA Polymerase Subunit Structures 10-7 Subunit structure.

More information

Learning to Use PyMOL (includes instructions for PS #2)

Learning to Use PyMOL (includes instructions for PS #2) Learning to Use PyMOL (includes instructions for PS #2) To begin, download the saved PyMOL session file, 4kyz.pse from the Chem 391 Assignments web page: http://people.reed.edu/~glasfeld/chem391/assign.html

More information

BIOLOGY. Chapter 15 Genes & Proteins

BIOLOGY. Chapter 15 Genes & Proteins BIOLOGY Chapter 15 Genes & Proteins CMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 17 Protein Synthesis 2014 Pearson Education, Inc. Fig. 17-1 Figure 17.1a n albino racoon Condition

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Protein Structure and Function: From Sequence to Consequence 1. From Sequence to Structure

Protein Structure and Function: From Sequence to Consequence 1. From Sequence to Structure Protein Structure and Function: From Sequence to Consequence Gregory A. Petsko and Dagmar Ringe, Brandeis University Published by New Science Press Ltd and distributed in the United States and Canada by

More information

Nucleic Acid Structure. Nucleic Acid Sequence Abbreviations. Sequence Abbreviations, con t.

Nucleic Acid Structure. Nucleic Acid Sequence Abbreviations. Sequence Abbreviations, con t. BC 4054 Spring 2001 Chapter 11 & 12 Review Lecture otes Slide 1 ucleic Acid Structure Linear polymer of nucleotides Phosphodiester linkage between 3 and 5 positions See Figure 11.17 Slide 2 ucleic Acid

More information

Proteins Amides from Amino Acids

Proteins Amides from Amino Acids Chapter 26 and Chapter 28 Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl group Joined as amides between the ¾NH 2 of one amino acid and the ¾CO 2 H to the

More information

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons, From Gene to Protein I. Transcription and translation are the two main processes linking gene to protein. A. RNA is chemically similar to DNA, except that it contains ribose as its sugar and substitutes

More information

Chapter 3. DNA Replication & The Cell Cycle

Chapter 3. DNA Replication & The Cell Cycle Chapter 3 DNA Replication & The Cell Cycle DNA Replication and the Cell Cycle Before cells divide, they must duplicate their DNA // the genetic material DNA is organized into strands called chromosomes

More information

Biochemistry study of the molecular basis of life

Biochemistry study of the molecular basis of life Biochemistry : An Introduction Biochemistry study of the molecular basis of life n Study of the chemistry of living organisms Studies organic molecules & organic reactions in living organisms n Living

More information

test 7 3. What is the main function of a vacuole in a cell?

test 7 3. What is the main function of a vacuole in a cell? test 7 Name: Date: 1. ase your answer(s) to the following question(s) on the diagram below and on your knowledge of biology. The diagram represents a model cell setup. The locations of three different

More information

Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology

Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology Molecular Cell Biology - Problem Drill 01: Introduction to Molecular Cell Biology Question No. 1 of 10 1. Which statement describes how an organism is organized from most simple to most complex? Question

More information

Chapter 11. Gene Expression and Regulation. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc..

Chapter 11. Gene Expression and Regulation. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.. Chapter 11 Gene Expression and Regulation Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc.. 11.1 How Is The Information In DNA Used In A Cell? Most genes contain

More information

Antibodies and Antigens in the Blood Bank 9/7/2015 NAHLA BAKHAMIS 1

Antibodies and Antigens in the Blood Bank 9/7/2015 NAHLA BAKHAMIS 1 Antibodies and Antigens in the Blood Bank NAHLA BAKHAMIS 9/7/2015 NAHLA BAKHAMIS 1 Outline Antibodies structure, classes and functions Most important Abs in the blood bank effective roles of Abs Zeta potential

More information

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract

Purification: Step 1. Lecture 11 Protein and Peptide Chemistry. Cells: Break them open! Crude Extract Purification: Step 1 Lecture 11 Protein and Peptide Chemistry Cells: Break them open! Crude Extract Total contents of cell Margaret A. Daugherty Fall 2003 Big Problem: Crude extract is not the natural

More information

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open!

Purification: Step 1. Protein and Peptide Chemistry. Lecture 11. Big Problem: Crude extract is not the natural environment. Cells: Break them open! Lecture 11 Protein and Peptide Chemistry Margaret A. Daugherty Fall 2003 Purification: Step 1 Cells: Break them open! Crude Extract Total contents of cell Big Problem: Crude extract is not the natural

More information

DNA AND CHROMOSOMES. Genetica per Scienze Naturali a.a prof S. Presciuttini

DNA AND CHROMOSOMES. Genetica per Scienze Naturali a.a prof S. Presciuttini DNA AND CHROMOSOMES This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. The Building Blocks

More information

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel

Scientific Method. Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Name: NetID: Exam 1 Version 1 September 12, 2017 Dr. A. Pimentel Each question has a value of 4 points and there is a total of 156 points in the exam. However, the maximum score of this exam will be capped

More information

SUPPLEMENTAL FIGURE LEGENDS. Figure S1: Homology alignment of DDR2 amino acid sequence. Shown are

SUPPLEMENTAL FIGURE LEGENDS. Figure S1: Homology alignment of DDR2 amino acid sequence. Shown are SUPPLEMENTAL FIGURE LEGENDS Figure S1: Homology alignment of DDR2 amino acid sequence. Shown are the amino acid sequences of human DDR2, mouse DDR2 and the closest homologs in zebrafish and C. Elegans.

More information

Structural bioinformatics

Structural bioinformatics Structural bioinformatics Why structures? The representation of the molecules in 3D is more informative New properties of the molecules are revealed, which can not be detected by sequences Eran Eyal Plant

More information

Biomolecular chemistry. 7. Antibodies: structure and function

Biomolecular chemistry. 7. Antibodies: structure and function 154 Biomolecular chemistry 7. Antibodies: structure and function Suggested reading: Sections 5.1 to 5.3 of Mikkelsen and Cortón, Bioanalytical Chemistry Primary Source Material Biochemistry Chapter 33:

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

ANAT Cell Biology Lecture 11 School of Medical Sciences The University of New South Wales. UNSW Copyright Notice

ANAT Cell Biology Lecture 11 School of Medical Sciences The University of New South Wales. UNSW Copyright Notice ANAT3231 - Cell Biology Lecture 11 School of Medical Sciences The University of New South Wales The actin cytoskeleton Prof Peter Gunning Oncology Research Unit Room 502A Wallace Wurth Building Email:

More information

CHAPTER 3 ANTIBODY STRUCTURE I

CHAPTER 3 ANTIBODY STRUCTURE I CHAPTER 3 ANTIBODY STRUCTURE I See APPENDIX: (3) OUCHTERLONY ANALYSIS; (6), EQUILIBRIUM DIALYSIS; (7) CROSS-REACTIVITY Electrophoretic separation of serum proteins identifies the GAMMA-GLOBULIN fraction

More information

Unit 2 Review: DNA, Protein Synthesis & Enzymes

Unit 2 Review: DNA, Protein Synthesis & Enzymes 1. One of the functions of DNA is to A. secrete vacuoles.. make copies of itself.. join amino acids to each other. D. carry genetic information out of the nucleus. 2. Two sugars found in nucleic acids

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Movement at the Molecular Level

Movement at the Molecular Level Movement at the Molecular Level Diffusion: = 6 D t (D 6 π µ a) Typical numbers: 10 nm protein in water D= 10-10 m 2 /s.in cells D= 10-12 m 2 /s (D= 10-14 m 2 /s lipids) [] 1/2 =1 µm, t ~0.2

More information

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood Veins have large radii and low resistance. Walls are thin, not elastic Most blood volume is in veins Veins returning blood Veins Valves prevent engorgement and backflow Sympathetic NS constricts veins

More information

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc.

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc. The World Leader in SPR Technology Jimmy Page, PhD, Biacore, Inc. Objectives of Biacore Experiments Yes/No Data» Is there binding?» Ligand Fishing Concentration Analysis: How MUCH? Active Concentration

More information

14 Gene Expression: From Gene to Protein

14 Gene Expression: From Gene to Protein CMPBELL BIOLOY IN FOCS rry Cain Wasserman Minorsky Jackson Reece 14 ene Expression: From ene to Protein Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Flow of enetic Information

More information