Plasmonic Biosensors

Size: px
Start display at page:

Download "Plasmonic Biosensors"

Transcription

1 Plasmonic Biosensors Lecture 2/2 Andreas B. Dahlin Biotechnical Physics 1 Outline About plasmonic biosensors: What is a surface-based biosensor? Plasmons in nanoparticles and on surfaces. Examples of plasmonics in biotechnology. The connection to binding kinetics to surfaces: We can now measure Γ! Biotechnical Physics 2 1

2 What is a Biosensor? One definition can be found in the handbook from the International Union for Pure and Applied Chemistry (IUPAC): A device that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical compounds usually by electrical, thermal or optical signals. The use of recognition elements (or receptors) is sometimes referred to as affinity based biosensing. analyte (biological or not) Yrecognition element (biological) Y transducer signal Biotechnical Physics 3 Biosensors in Everyday Life Not many! New biosensor technologies are more common in research environments. Glucose sensor changed the life of diabetes patients. By some considered to be the only truly successful biosensor and still developing. Quantitative! Pregnancy tests (a lateral flow assay) detect human chorionic gonadotropin from urine. (Also for ovulation.) Qualitative! ~10 nm Au Yao et al. Biosensors and Bioelectronics 2011 Clearblue Biotechnical Physics 4 2

3 Sensor Terminology Most sensors, not the least biosensors, need to calibrated. In a calibration experiment the response to known doses of the variable of interest is measured. The sensitivity, dynamic range and detection limit are defined from the calibration curve. sensor response (measured) dynamic range slope = sensitivity zero response detection limit environmental variable (controlled) Biotechnical Physics 5 The Challenge of Specificity Most biosensors need to operate label-free to be useful. This means that they work even if the analyte does not carry any artificial label. signal transduction When operating label-free, the biggest problems in biosensor technology is arguably false positive results. When we search for analytes (fish) in biological samples we will always have a lot of other molecules (fishes) present that can interfere with the detection. bait (probe, receptor, recognition element) sample solution target (analyte) Biotechnical Physics 6 3

4 Surface Sensitive Techniques Detect anything that binds to a surface! Several instruments exist, most are based on optical measurements, some mechanical techniques and also a few other. In this course you will learn about two techniques: Surface Plasmon Resonance (SPR) and Quartz Crystal Microbalance (QCM). Biacore (GE Healthcare) Qsense (Biolin Scientific) Biotechnical Physics 7 Know Your Techniques! You will learn the physics behind the techniques. The instruments will not be black boxes to you when you encounter them in the future! Sometimes things go wrong when scientists use machines they know nothing about Rich & Myszka Journal of Molecular Recognition Biotechnical Physics 8 4

5 Surface-Based Detection The surface must be chemically functionalized such that only the analyte binds. The techniques work in real-time, which gives information about binding kinetics. Optical techniques like SPR often enable multiplexing, detection of multiple targets, by imaging mode. sensor surface Y Y Y Y other molecules binding to recognition element Y Y Y Y analyte binding to surface functionalization Y Y Y Y other molecules binding to surface Y Y Y Y recognition element Y inert background analyte sample solution specific interaction Y Y Y Y Biotechnical Physics 9 Biosensor Scenarios In vivo: Inside the living organism. Not for plasmonic biosensors! In situ: Biological sample analyzed in artificial setting. Possible but difficult! In vitro: Artificial setting, bottom-up synthetic biology. Perfect! Biotechnical Physics 10 5

6 Implications from Binding Kinetics Remember the models for binding kinetics to surfaces! Let the A molecules represent receptors and the B molecules targets (analytes). A + B AB If the surface is a sensor that gives a measurable response proportional to Γ: Real-time operation needed to determine k on and k off and to confirm equilibrium. Measuring the equilibrium coverage gives only K D from C 0 or vice versa. Diffusion models can estimate performance limits: A molecule can diffuse to the sensor surface without binding to it, but not bind to the surface without first diffusing to it. Flow is often needed to prevent diffusion effects and reach Langmuir behavior. Small sensors give a higher diffusive flux due to edge effects. But the capture efficiency is poor under flow (many molecules will be lost) Biotechnical Physics 11 What is a Plasmon? Physical understanding: Plasmons are collective oscillations in the free electrons of metals. Mathematical understanding: Plasmons are solutions to Maxwell s equations for certain metal-dielectric geometries. For a metal nanoparticle, the polarization enhanced at certain frequencies of light. For noble metals, this occurs for visible light, which gives strong colors. The Lycurgus Cup is the oldest example (year ~400) of this kind of staining. ambient light British Museum light inside cup Freestone et al. Gold Bulletin 2007 Ag, Au, Cu (60%, 30%, 10%) in glass Biotechnical Physics 12 6

7 Absorption and Scattering The polarizability (α) of the particle determines the absorption and scattering cross sections (σ). The extinction is the sum of absorption and scattering. For gold nanoparticles (small and spherical): Blue light is absorbed (true for all gold). Green light is absorbed and scattered (by the plasmon). Red light is transmitted (low extinction). σ σ σ ext sca abs k Im α 4 k 2 6π α σ ext σ sca Here k is the incident wavevector (k = 2π/λ) and α is defined as a volume. The cross sections are areas (shadows)! British Biocell International Biotechnical Physics 13 Electrostatic Approximation By considering the electric field of light as static, the polarizability can be calculated easily for a sphere: α0 3V ε ε εm 2ε m Jackson Classical Electrodynamics Wiley 1999 This is valid for particles that are small compared to the wavelength of light (<50 nm). The symbol ε represents (relative) permittivity at optical frequencies. For simple transparent materials like water, ε is roughly the square of the refractive index (ε = n 2 ). For metals, the permittivity is complex (energy absorption) and dispersive (λ dependent). cross section (σ ext, m 2 ) 8 x R (nm) Au H 2 O geometric cross section areas wavelength (λ 0, nm) Biotechnical Physics 14 7

8 The Optical Near-Field The absorption and scattering cross sections correspond to the far field properties of the nanoparticles, i.e. they describe what happens to a light wave that passed the particle. One can also talk about the near-field, i.e. the local electromagnetic field distribution on the nanoscale. This is very important when using the particles as biosensors! The field is strongest at the metal and typically extends a distance approximately equal to the radius of the particle. field enhancement ( E /E 0 ) Electrostatic theory can be used to calculate the near field as well: (y, nm) Au E x, y, z E0 x Re 3 r x 3x xx yy zz 0 r 5 z = 0 λ 0 = 526 nm H 2 O E 0 (x, nm) Biotechnical Physics 15 Surface Plasmons Surface plasmons are similar to ordinary light (electromagnetic plane wave) but confined to the interface between a metal (conductor) and a dielectric (insulator). The surface plasmon propagates along the interface (like a wave on a water surface). Eventually the wave energy has dissipated (normally by heating the metal). The wave must have transverse magnetic polarization. z E field vector in z direction H field vector in y direction wave propagation in x direction H(x,z,t) y 0 z Im(k z ) Re(k x ) dielectric metal E x x distribution x, t E0exp iωtexp ikxx H x z, t H expik x k z ωt of E field, 0 x z Biotechnical Physics 16 y 8

9 The Dispersion Relation There exists a relation between the momentum and energy of a surface plasmon. In contrast to nanoparticles, surface plasmons exist in a continuum of frequencies! Problem: Momentum is always lacking for the incident light! The dispersion relation does not cross that of photons in the dielectric medium! angular frequency (ω, Hz) x photon in vacuum photon in water H 2 O x 10 7 real part of wavevector (Re(k x ), m -1 ) Biotechnical Physics 17 Au k x c m m Excitation of Surface Plasmons The additional momentum needed can be added in several ways. One is to introduce a periodic grating on the surface. The grating wavevector adds to that of the incident photons. The condition for excitation is: Re j Λ 0 m 0 nm sin 0 m ksin(θ) θ k dielectric Λ Re(k x ) metal One can also use a high refractive index material, a thin metal film and total internal reflection configuration. The resonance condition is then: Re m np sin m dielectric metal k 0 analyze reflection Biotechnical Physics 18 prism θ k 0 n p sin(θ) Re(k x ) 9

10 electric field component (a.u.) Total Internal Reflection When measuring the reflected light one sees a minimum, representing SPR! One can vary either the angle or the wavelength of incident light (spectroscopy at fixed angle) Fresnel coefficient H 2 O Au d = 50 nm n p = 1.7 no full reflection resonance F T F R F A angle of incidence (θ, ) λ nm Biotechnical Physics 19 Im(k Surface Plasmon Near-Field z ) 0 z x Re(k x ) dielectric metal At any time, the surface plasmon has negative and positive poles on the metal surface. The electric field has two components in the xz plane. Magnetic field only in y. distribution of E field The time-averaged field only depends on the distance from the surface due to symmetry. The field extends approximately half of the wavelength of light used to excite the surface plasmon. λ SP k x = i m -1 k z = i m -1 z = 0 2 E z 1 E x H 2 O λ SP /4 Au position in propagation direction (x, μm) Biotechnical Physics 20 10

11 Checklist You do not have to learn any equations for calculating stuff related to the optics, such as how to predict the resonance of a certain nanoparticle etc. However, you need to understand the basic physics. Checklist of some important concepts and the differences between nanoparticle and surface plasmons: Electrostatic approximation. Extinction, absorption and scattering cross sections. Dispersion relation and momentum of incident light. How to excite plasmons by light and spectroscopy methodology. Electromagnetic field extension, difference between near-field and far-field Biotechnical Physics 21 Biosensing with Plasmonics The most common plasmonic biosensor principle is refractometric detection: When a molecule binds to the surface, the refractive index changes. All molecules of interest have a refractive index which is higher than water. The properties of the plasmon are changed because they depend on the refractive index close to the metal. By optical spectroscopy, changes in intensity of light for different wavelengths can then be detected. The resonance shifts in the spectrum. This holds both for surface plasmons (the SPR technique) and nanoparticle plasmons (lab exercise 2) Biotechnical Physics 22 11

12 Commercial SPR First paper published in Liedberg et al. Sensors and Actuators 1983 Pharmacia Biosensor started shortly after. Became Biacore later, which is now part of GE Heathcare. SPR is now the most established biosensor technology for studying biomolecular interactions. But not used for medical diagnostics... The instruments are expensive, but primarily because they contain efficient liquid handling and temperature stabilization etc. SPR can be cheap! Biotechnical Physics 23 SPR Imaging SPR can be operated in imaging mode which enables multiplexing: Several interactions can be probed simultaneously using the same sample solution. One molecule in solution: See how it interacts with different receptors on different spots. Ideal for proteomics and in principle for drug development. Several molecules in solution: Detect the presence of multiple analytes in one sample using different recognition elements. High risk of problems from nonspecific binding. Homola Chemical Society Reviews 2008 ~100 μm spots, ~100 in total Biotechnical Physics 24 12

13 Other Optical Techniques Plasmons is definitely not the only way to go! Ellipsometry (often for air environment). Optical waveguide lightmode spectroscopy. Dual polarization interferometry. Very similar since all are based on refractometric detection! Microvacuum Biotechnical Physics 25 Importance of Field Extension If the electromagnetic field extends very little, molecules far away will not be detected. If the field extends far, only a part of the detection capability is utilized and the system becomes more sensitive to bulk effects far away from the surface. monolayer gel matrix highest signal nanoparticle Biotechnical Physics 26 13

14 Miniaturized Nanoparticle Sensors If SPR is so great, why bother with plasmonic biosensors based on nanoparticles? One reason is that people want to resolve individual molecules binding to the surface. SPR is hard to make sufficiently small, but through measurements on single nanoparticles one can perhaps reach single molecule resolution? Murray & Barnes Advanced Materials 2008 scattered light in dark field illumination Biotechnical Physics 27 Resolving Single Molecules Very large proteins adsorbing directly on the surface. Help of complementary techniques can make it slightly better Ament et al. Nano Letters 2012 Zijlstra et al. Nature Nanotechnology 2012 Cool, but is it useful? Biotechnical Physics 28 14

15 Sandwich Assays Use secondary receptor and signal amplification post binding. Improves detection limit, but excludes real time analysis to get k on and k off! Y second tagged receptor Biotechnical Physics 29 Competitive Assays Measure the reduction in receptor binding to the surface, which contains a receptor for the receptor. Target binding to the receptor in solution blocks binding site for receptor on surface. receptor in solution target Excellent for small molecules and interaction occurs in solution! But again no k on and k off! receptor on surface Y Y Y Y Biotechnical Physics 30 15

16 Detection Based on Particle Coupling Instead of detecting changes in refractive index on the metal surface, one can utilize the fact that nanoparticles close to each other will change their plasmon resonances. In general, the spectral changes are much larger and the sensitivity is better. free particles sequence recognition by analyte linked particles However, this requires that the analyte either cleaves the link between particles or couples them together. Y Y Y Y sandwich double recognition Biotechnical Physics 31 Other Uses of Nanoparticles Gold and silver nanoparticles have been used throughout history for improving health. Also, they are great labels since they do not bleach! Wikipedia: Argyria Biotechnical Physics 32 16

17 Reflections & Questions? Biotechnical Physics 33 17

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

CREOL, The College of Optics & Photonics, University of Central Florida

CREOL, The College of Optics & Photonics, University of Central Florida Metal Substrate Induced Control of Ag Nanoparticle Plasmon Resonances for Tunable SERS Substrates Pieter G. Kik 1, Amitabh Ghoshal 1, Manuel Marquez 2 and Min Hu 1 1 CREOL, The College of Optics and Photonics,

More information

Plasmonic Nanostructures II

Plasmonic Nanostructures II Plasmonic Nanostructures II Dr. Krüger / Prof. M. Zacharias, IMTEK, Propagation of SPPs Propagation distance decreases with decreasing strip width! 2 Dr. Krüger / Prof. M. Zacharias, IMTEK, Bound and leaky

More information

Solvent Correction versus In-line Reference Measurement

Solvent Correction versus In-line Reference Measurement Technical Note Solvent Correction versus In-line Reference Measurement Optical systems such as SPR and BLI often have difficulty with nonspecific noise when measuring low molecular weight analyte in organic

More information

Biomarker Discovery using Surface Plasmon Resonance Imaging

Biomarker Discovery using Surface Plasmon Resonance Imaging F e a t u r e A r t i c l e Feature Article Biomarker Discovery using Surface Plasmon Resonance Imaging Elodie LY-MORIN, Sophie BELLON, Géraldine MÉLIZZI, Chiraz FRYDMAN Surface Plasmon Resonance (SPR)

More information

Label-free interaction analysis in realtime using surface plasmon resonance

Label-free interaction analysis in realtime using surface plasmon resonance GE Healthcare Technology Note 23 Biacore systems Label-free interaction analysis in realtime using surface plasmon resonance Providing quantitative data on: report point Specificity sensorgram To what

More information

Basics of Plasmonics

Basics of Plasmonics Basics of Plasmonics Min Qiu Laboratory of Photonics and Microwave Engineering School of Information and Communication Technology Royal Institute of Technology (KTH) Electrum 229, 16440 Kista, Sweden http://www.nanophotonics.se/

More information

Properties of nanofabricated biosensors based on DNA aptamers

Properties of nanofabricated biosensors based on DNA aptamers Properties of nanofabricated biosensors based on DNA aptamers Tibor Hianik Faculty of Mathematics, Physics and Computer Sci., Comenius University, Bratislava, Slovakia Content of presentation Introduction

More information

Plasmonics: Application-oriented fabrication. Part 1. Introduction

Plasmonics: Application-oriented fabrication. Part 1. Introduction Plasmonics: Application-oriented fabrication Part 1. Introduction Victor Ovchinnikov Department of Aalto Nanofab Aalto University Espoo, Finland Alvar Aalto was a famous Finnish architect and designer

More information

Interferometric optical biosensor. Xingwei Wang

Interferometric optical biosensor. Xingwei Wang Interferometric optical biosensor Xingwei Wang 1 Light Transverse electromagnetic wave Reflection Refraction Diffraction Interference 2 Fabry-Perot interferometer 3 Interferometer Two waves that coincide

More information

OMICS Group signed an agreement with more than International Societies to make healthcare informati on Open Access. OMICS Group Conferences

OMICS Group signed an agreement with more than International Societies to make healthcare informati on Open Access. OMICS Group Conferences About Omics Group OMICS Group International through its Open Ac cess Initiative is committed to make genuine an d reliable contributions to the scientific commu nity. OMICS Group hosts over 400 leading-edg

More information

Introduction of Biosensors

Introduction of Biosensors Introduction of Biosensors Lecture April 17 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) What s is a biosensor? Target 4.22 Signal Signal Analtye

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biomedical sensors Kung-Bin Sung 5/21/2007 1 Outline Chapter 9: Biomedical sensors Biopotential measurements Physical measurements Chemical measurements Blood gases

More information

In-Situ Monitoring of Pattern Filling in Nano-Imprint Lithography Using Surface Plasmon Resonance

In-Situ Monitoring of Pattern Filling in Nano-Imprint Lithography Using Surface Plasmon Resonance Copyright 2011 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 11, 1 6, 2011 In-Situ Monitoring of Pattern Filling

More information

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector International Journal of Electrical Components and Energy Conversion 2017; 3(5): 83-87 http://www.sciencepublishinggroup.com/j/ijecec doi: 10.11648/j.ijecec.20170305.11 ISSN: 2469-8040 (Print); ISSN: 2469-8059

More information

7-2E. Photonic crystals

7-2E. Photonic crystals 7-2E. Photonic crystals Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/ Univ Central Florida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/ose6938i/handouts/forms/allitems.aspx

More information

Satoshi Kawata. Near-Field Optic s and Surface Plasmon Polaritons

Satoshi Kawata. Near-Field Optic s and Surface Plasmon Polaritons Satoshi Kawata Near-Field Optic s and Surface Plasmon Polaritons Near-Field Optics and the Surface Plasmon Polariton Dieter W. Pohl 1 1. Introduction 1 2. Back to the Roots 1 2.1. Rayleigh and Mie Scattering

More information

Introduction to Biosensors. Prof. Xingwei Wang

Introduction to Biosensors. Prof. Xingwei Wang Introduction to Biosensors Prof. Xingwei Wang 1 Brain Storm What do you think of biosensor? 2 Brain Storm What do you think of biosensor? 3 Significance & Great Demands Civil defense Food safety Criminology

More information

BIOSENOSRS BIO 580. Nanobiosensors WEEK-13 Fall Semester. Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University

BIOSENOSRS BIO 580. Nanobiosensors WEEK-13 Fall Semester. Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University BIOSENOSRS BIO 580 Nanobiosensors WEEK-13 Fall Semester Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University Topics that will be covered in the course History of

More information

High Resolution X-ray Diffraction

High Resolution X-ray Diffraction High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:

More information

Label-Enhanced SPR Improves the Detectability of Label-Free Surface Plasmon Resonance Analysis 100x

Label-Enhanced SPR Improves the Detectability of Label-Free Surface Plasmon Resonance Analysis 100x episentec Label-Enhanced SPR Improves the Detectability of Label-Free Surface Plasmon Resonance Analysis 1x Anders Hanning, Episentec Drug Discovery 15, Telford, 2-3 September 215 Episentec - Better Biosensors

More information

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Technical Overview Authors Dr. Fabian Zieschang, Katherine MacNamara,

More information

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing M.Stephan, S.Große: Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing Workshop January, 28 th -29 th 2005, Dresden Particulate Heterogeneities

More information

Characterization of Aptamer Binding using SensíQ SPR Platforms

Characterization of Aptamer Binding using SensíQ SPR Platforms Characterization of Aptamer Binding using SensíQ SPR Platforms APPLICATION NOTE INTRODUCTION Aptamers have the potential to provide a better solution in diagnostics and other research areas than traditional

More information

Plasmon Field Effect Transistor: A Novel Sensing Platform for Biomedical Applications

Plasmon Field Effect Transistor: A Novel Sensing Platform for Biomedical Applications University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2016-06-17 Plasmon Field Effect Transistor: A Novel Sensing Platform for Biomedical Applications Hossein

More information

Engineering in the Optimization of Resolution of Nanohole Arrays in Metal Films for Refractive Index Sensing

Engineering in the Optimization of Resolution of Nanohole Arrays in Metal Films for Refractive Index Sensing Engineering in the Optimization of Resolution of Nanohole Arrays in Metal Films for Refractive Index Sensing by Gabriela Andrea Cervantes Téllez B.Sc., Instituto Tecnológico de Estudios Superiores de Monterrey,

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Use of silver nanoparticles in medically-related pressure measurements.

Use of silver nanoparticles in medically-related pressure measurements. Use of silver nanoparticles in medically-related pressure measurements. Thomas L. Smith PhD, *Baxter McGuirt BS, Lawrence X. Webb MD, Brian Werner MD, William Wagner PhD, *David Carroll PhD Wake Forest

More information

Surface plasmons in metallic nanoparticles: fundamentals and applications

Surface plasmons in metallic nanoparticles: fundamentals and applications Surface plasmons in metallic nanoparticles: fundamentals and applications M A Garcia To cite this version: M A Garcia. Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

LPR Sensor Made by Using Ordered Porous Alumina

LPR Sensor Made by Using Ordered Porous Alumina UDC 669.716.9+669.218+534.428+615.076 LPR Sensor Made by Using Ordered Porous Alumina Yuichi TOMARU*, Takeharu TANI*, Yoshinori HOTTA**, Yusuke HATANAKA**, and Masayuki NAYA* Abstract We fabricated a LPR

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Research at the nanoscale is more effective, when research teams can quickly and easily observe and characterize a wide

More information

Phil Saunders, spacechannel.org

Phil Saunders, spacechannel.org Guidi with Phil Saunders, spacechannel.org ng Light Long-Range nge Plasmons Aloyse Degiron, Pierre Berini and David R. Smith Long-range surface plasmons are optical modes propagating along metallic circuits

More information

SURFACE PLASMON RESONANCE-BASED SYSTEMS

SURFACE PLASMON RESONANCE-BASED SYSTEMS SURFACE PLASMON RESONANCE-BASED SYSTEMS ADVANCED METHODS IN BIOENGINEERING LABORATORY 3/1/2011 1 Schedule Week 1: Introduction Reagents preparation Ligand immobilization of Protocol 1 Week 2: Kinetics

More information

An Easy Introduction to Plasmonics

An Easy Introduction to Plasmonics An Easy Introduction to Plasmonics Wolfgang Freude Institute of Photonics and Quantum Electronics (IPQ), University of Karlsruhe, Germany Universität Karlsruhe (TH) Institut für Photonik und Quantenelektronik

More information

Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms Wan Maisarah Mukhtar 1, *, Razman Mohd Halim 2, Hazirah Hassan 1 1 Faculty of Science and Technology, Universiti

More information

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors Sensors 2013, 13, 3232-3241; doi:10.3390/s130303232 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal

More information

Sandrine Filion Côté

Sandrine Filion Côté SPECTRO-ANGULAR OPTICAL BIOSENSOR BASED ON SURFACE PLASMON RESONANCE OPERATING IN THE VISIBLE SPECTRUM Sandrine Filion Côté Department of Electrical and Computer Engineering McGill University, Montréal

More information

What is Hydrologic Optics? Optics Attentuation Inherent properties Scatter Absorption Apparent properties

What is Hydrologic Optics? Optics Attentuation Inherent properties Scatter Absorption Apparent properties 1 of 7 3/22/2006 1:29 PM Water quality research Water quality Hydrologic optics Components of water quality SERC water research projects CISNet program What is Hydrologic Optics? Optics Attentuation Inherent

More information

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy Fluorescence Microscopy Louisiana Tech University Ruston, Louisiana Microscopy Workshop Dr. Mark DeCoster Associate Professor Biomedical Engineering 1 Terms and concepts to know: Signal to Noise Excitation

More information

Optical Response of Coated Iron Oxide(s) Nanoparticles Towards Biomedical Applications

Optical Response of Coated Iron Oxide(s) Nanoparticles Towards Biomedical Applications American Journal of Optics and Photonics 2017; 5(6): 67-72 http://www.sciencepublishinggroup.com/j/ajop doi: 10.11648/j.ajop.20170506.12 ISSN: 2330-8486 (Print); ISSN: 2330-8494 (Online) Optical Response

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Biacore X100. GE Healthcare Life Sciences. Biacore X100 Plus Package. Biacore X100 delivers:

Biacore X100. GE Healthcare Life Sciences. Biacore X100 Plus Package. Biacore X100 delivers: GE Healthcare Life Sciences Data file 28-9592-29 AB Biacore label-free interaction analysis Biacore X100 Biacore X100 (Fig 1) is an automated and versatile system for comprehensive, label-free analysis

More information

Analysis of optical properties of solar energy materials

Analysis of optical properties of solar energy materials Analysis of optical properties of solar energy materials Comices Energie solaire - Namur - 23/04/2012 Michel Voué Physique des Matériaux et Optique Centre de Recherche en Physique des Matériaux Université

More information

Optical Control of Surface Plasmon Coupling in Organic Light Emitting Devices with Nanosized Multi-cathode Structure

Optical Control of Surface Plasmon Coupling in Organic Light Emitting Devices with Nanosized Multi-cathode Structure Proceedings of the 5 th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11-13, 2014 Paper No. 234 Optical Control of Coupling in Organic Light Emitting

More information

Repetition: Adhesion Mechanisms

Repetition: Adhesion Mechanisms Repetition: Adhesion Mechanisms a) Mechanical interlocking b) Monolayer/monolayer c) Chemical bonding d) Diffusion e) Psedo diffusion due to augmented energy input (hyperthermal particles) Repetition:

More information

A handheld system for DNA test based on Lab on chip technologies. Marco Bianchessi

A handheld system for DNA test based on Lab on chip technologies. Marco Bianchessi A handheld system for DNA test based on Lab on chip technologies Marco Bianchessi History 2 Mid 90s: Lab on chip introduction From niche to high-volumes products What is needed: 3 Miniaturization 75 000

More information

Periodic Metallic Nanostructures as Plasmonic Chemical Sensors

Periodic Metallic Nanostructures as Plasmonic Chemical Sensors pubs.acs.org/langmuir Periodic Metallic Nanostructures as Plasmonic Chemical Sensors Chiara Valsecchi and Alexandre G. Brolo* Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC,

More information

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO Today the structure determinations etc are all computer -assisted It is instructive however for you to do a simple structure by hand Rocksalt Structure Quite common in nature KCl, NaCl, MgO 9-1 Typical

More information

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V Cellular imaging using Nano- Materials A Case-Study based approach Arun Murali, Srivats V Agenda Discuss a few papers Explain a couple of new imaging techniques and their benefits over conventional imaging

More information

arxiv: v1 [physics.optics] 3 Feb 2010

arxiv: v1 [physics.optics] 3 Feb 2010 Plasmonic crystal demultiplexer and multiports Aurelien Drezet, Daniel Koller, Andreas Hohenau, Alfred Leitner, Franz R. Aussenegg, and Joachim R. Krenn Institute of Physics and Erwin Schrödinger Institute

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering Photonic Sintering of Silver for Roll-to-Roll Printed Electronics Saad Ahmed, PhD Manager-Engineering Topics Introduction Significance of nanotechnology Conductive inks Pulsed light for sintering Reel-to-reel

More information

Cavity Filters. KIGRE, INC., 100 Marshland Road, Hilton Head, SC 29926, USA PH: FAX: Web:

Cavity Filters. KIGRE, INC., 100 Marshland Road, Hilton Head, SC 29926, USA PH: FAX: Web: Cavity Filters Kigre, Inc. s expertise in laser glass technology has led the way in the company s development of a wide range of cavity filter glass for solid-state lasers. Filters are used inside the

More information

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier Alberto Leggieri, Franco Di Paolo, Davide Passi Department of Electronic Engineering University of Roma Tor Vergata 00133 Roma

More information

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc.

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc. The World Leader in SPR Technology Jimmy Page, PhD, Biacore, Inc. Objectives of Biacore Experiments Yes/No Data» Is there binding?» Ligand Fishing Concentration Analysis: How MUCH? Active Concentration

More information

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics Chris Nadovich Research Objective The novel combination of a forked holographic grating with a Bragg coupler structure to create

More information

Diffraction Basics. The qualitative basics:

Diffraction Basics. The qualitative basics: The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure, x-rays scattered in

More information

Convection Conduction

Convection Conduction L 18 Thermodynamics [3] Review Heat transfer processes convection conduction Greenhouse effect Climate change Ozone layer Review The temperature of a system is a measure of the average kinetic energy of

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

Self-assembly of oligonucleotides

Self-assembly of oligonucleotides Self-assembly of oligonucleotides Dr. K. Uma Maheswari Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1 APPLICATIONS

More information

Potential of SPR Sensors Based on Multilayer Interfaces With Gold and LHM for Biosensing Applications

Potential of SPR Sensors Based on Multilayer Interfaces With Gold and LHM for Biosensing Applications PHOTONIC SENSORS / Vol. 7, No. 3, 2017: 199 205 Potential of SPR Sensors Based on Multilayer Interfaces With Gold and LHM for Biosensing Applications Abdellatif CHERIFI * and Benamar BOUHAFS University

More information

Understanding Optical Coatings For Military Applications

Understanding Optical Coatings For Military Applications Understanding Optical Coatings For Military Applications By Trey Turner, Chief Technology Officer, REO Virtually all optical components used in military applications, such as target designation, rangefinding

More information

Explore the future. Automotive Test Systems Process & Environmental Medical Semiconductor Scientific

Explore the future. Automotive Test Systems Process & Environmental Medical Semiconductor Scientific Explore the future Automotive Test Systems Process & Environmental Medical Semiconductor Scientific Label-free Bio-Affinity Analysis Surface Plasmon Resonance (SPR) is an established tool in the life science

More information

average diameter = 3 nm, from PlasmaChem) was mixed in NLCs to produce QDembedded

average diameter = 3 nm, from PlasmaChem) was mixed in NLCs to produce QDembedded Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information Experimental Section The blended CLC-monomer materials used to fabricate

More information

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Introduction In this application note, we will discuss the application of quantum dots in fluorescence imaging, both

More information

Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro

Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro 90 Qswitched lasers are gaining more interest because of their ability for various applications in remote sensing, environmental monitoring, micro machining, nonlinear frequency generation, laserinduced

More information

Confocal Microscopy Analyzes Cells

Confocal Microscopy Analyzes Cells Choosing Filters for Fluorescence A Laurin Publication Photonic Solutions for Biotechnology and Medicine November 2002 Confocal Microscopy Analyzes Cells Reprinted from the November 2002 issue of Biophotonics

More information

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) Optical Coatings Photonics 4 Luxury Coatings 21.06.2017, Genève Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) RhySearch The Research- and Innovation Center in the Rhine Valley RhySearch

More information

X-Ray Diffraction Analysis

X-Ray Diffraction Analysis 162402 Instrumental Methods of Analysis Unit III X-Ray Diffraction Analysis Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu

Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu 10.119/1.36982 The Electrochemical Society Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu National Key Laboratory of Science and Technology

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

Photonic integrated circuits in biochemical food analysis

Photonic integrated circuits in biochemical food analysis Photonic integrated circuits in biochemical food analysis What is Photonics? Page 2 Photonics is the physical science of light generation, detection, and manipulation through e.g. transmission, modulation,

More information

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high and own the gap of 10 μm. Supplementary Figure 2 Strictly

More information

Photonic Drying Pulsed Light as a low Temperature Sintering Process

Photonic Drying Pulsed Light as a low Temperature Sintering Process Photonic Drying Pulsed Light as a low Temperature Sintering Process Lou Panico Xenon Corporation W E S T E R N M I C H I G A N U N I V E R S I T Y PRESENTATION OVERVIEW What is Printed Electronics Materials

More information

Chapter 10 Analytical Biotechnology and the Human Genome

Chapter 10 Analytical Biotechnology and the Human Genome Chapter 10 Analytical Biotechnology and the Human Genome Chapter Outline Enzyme tests and biosensors DNA-based tests DNA analysis technologies Human genome and genome-based analytical methods 1 Enzyme-based

More information

OCN 201. Light and sound in the ocean

OCN 201. Light and sound in the ocean OCN 201 Light and sound in the ocean Questions you always wanted to know the answer to: Why does the sand burn your feet at the beach while the ocean is cool? Why is the ocean blue? How can whales communicate

More information

Biomedical Applications of Molecular Spectroscopy

Biomedical Applications of Molecular Spectroscopy Biomedical Applications of Molecular Spectroscopy Mike Kayat B&W Tek, Inc 19 Shea Way Newark, DE 19713 United States of America +1 302 368 7824 mikek@bwtek.com 1 Overview Molecular spectroscopy is a large

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Determining fluorescence Limit of Detection with Nanoparticle Tracking Analysis (NTA)

Determining fluorescence Limit of Detection with Nanoparticle Tracking Analysis (NTA) Determining fluorescence Limit of Detection with Nanoparticle Tracking Analysis (NTA) FLUORESCENCE DETECTION PARTICLE SIZE PARTICLE CONCENTRATION Introduction The ability to detect nanoparticle fluorescence

More information

Protein Stability Analysis Using the Optim Patrick Celie NKI Protein Facility, Amsterdam

Protein Stability Analysis Using the Optim Patrick Celie NKI Protein Facility, Amsterdam Protein Stability Analysis Using the Optim 1000 Patrick Celie NKI Protein Facility, Amsterdam NKI Protein Facility Fundamental and translation cancer research ~ 650 scientists + supporting personnel Connected

More information

A LOW-COST AUTOSAMPLER FOR SURFACE PLASMON RESONANCE BIOSENSOR PLATFORMS

A LOW-COST AUTOSAMPLER FOR SURFACE PLASMON RESONANCE BIOSENSOR PLATFORMS XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal A LOW-COST AUTOSAMPLER FOR SURFACE PLASMON RESONANCE BIOSENSOR PLATFORMS C. S. Moreira 1,2, A. G. S. Barreto

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

Extreme sensitivity biosensing platform based on hyperbolic metamaterials

Extreme sensitivity biosensing platform based on hyperbolic metamaterials SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4609 Extreme sensitivity biosensing platform based on hyperbolic metamaterials Kandammathe Valiyaveedu Sreekanth 1*, Yunus Alapan 2, Mohamed ElKabbash 1, Efe

More information

Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay

Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay Updated: Nov 11, 2016 Introduction Immunoassay is a widely used method for detecting the presence

More information

Analysis of strongly absorbing chromophores by UV-visible ATR spectroscopy

Analysis of strongly absorbing chromophores by UV-visible ATR spectroscopy Technical Note: AN 915 Rev. B Analysis of strongly absorbing chromophores by UV-visible ATR spectroscopy Walter M. Doyle and Lani Tran This paper illustrates the potential of the attenuated total reflectance

More information

Welcome! openmicberkeley.wordpress.com. Open Berkeley

Welcome! openmicberkeley.wordpress.com. Open Berkeley Welcome! openmicberkeley.wordpress.com Agenda Jen Lee: Introduction to FRET Marla Feller: Using FRET sensors to look at time resolved measurements Becky Lamason: Using FRET to determine if a bacterial

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles

Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles Photoluminescence Spectroscopy on Chemically Synthesized Nanoparticles Torben Menke 1 Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung Universität Hamburg Diploma Talk, 18.12.27 1

More information

2007 PLACE Conference September 16-20 St Louis, MO Nano-Composite Polymer Optical Coatings Vampire Optical Coatings, Inc. Tom Faris vcoat@copper.net Introduction What is a nano-composite polymer coating?

More information

Amperometric Biosensors. Rahul N 04/10/2014

Amperometric Biosensors. Rahul N 04/10/2014 Amperometric Biosensors Rahul N 04/10/2014 Biosensor A biosensor is an analytical device, used for the detection of an analyte, that combines a biological component with a physicochemical detector. Bio-recognition

More information

Confocal Microscopy & Imaging Technology. Yan Wu

Confocal Microscopy & Imaging Technology. Yan Wu Confocal Microscopy & Imaging Technology Yan Wu Dec. 05, 2014 Cells under the microscope What we use to see the details of the cell? Light and Electron Microscopy - Bright light / fluorescence microscopy

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

University of Michigan

University of Michigan University of Michigan Department of Mechanical Engineering Low-cost Non-invasive Diagnosis of Malaria Infected Red Blood Cells Han Yu Undergraduate Student Department of Electrical Engineering and Computer

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

Freshman/Sophomore Junior Senior

Freshman/Sophomore Junior Senior Freshman/Sophomore Junior Senior Course Recommendations Mathematics (6 courses) MA 1021 MA 1024 (Calculus I) (Calculus IV) MA 1022 MA 2051 (Calculus II) (Differential Equations) MA 1023 MA 2611 (Calculus

More information

FANO PLASMONICS MADE SIMPLE

FANO PLASMONICS MADE SIMPLE Higher-order resonances in single-arm nanoantennas: Evidence of Fano-like interference FANO PLASMONICS MADE SIMPLE F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros José A. Sánchez-Gil, Instituto

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial

More information