Areas of Application for Proteomics in Toxicology

Size: px
Start display at page:

Download "Areas of Application for Proteomics in Toxicology"

Transcription

1 Proteomics

2

3 Areas of Application for Proteomics in Toxicology Diagnostics: detection of antigens and antibodies in blood samples profiling of sera to discover new disease markers environment and food monitoring Protein expression profiling: organ- and disease-specific arrays mode of action analysis Protein functional analysis: ligand-binding properties of receptors enzyme activities protein-protein interactions

4 Most Commonly Used Proteomics Techniques: Antibody arrays Protein activity arrays 2-D gels Shotgun proteomics ICAT technology SELDI 100% protein sequence coverage: a modern form of surrealism in proteomics. Meyer et al Amino Acids Jul 13.

5 Antibody Arrays Screening protein-protein t i interactions ti Studying protein posttranslational modifications Examining gprotein expression patterns

6 Antibody Arrays The layout design of the BD Clontech Ab Microarray 380. The BD Clontech Ab Microarray 380 (#K1847-1) contains 378 monoclonal antibodies arrayed in a 32 x 24 grid. Each antibody is printed in duplicate. Dark gray dots at the corners represent Cy3/Cy5-labeled bovine serum albumin (BSA) spots, which serve as orientation markers. The open circles correspond to unlabeled BSA spots, which serve as negative controls. For complete descriptions of the proteins profiled by the Ab Microarray 380, visit bdbiosciences.com

7 Limitations, Challenges and Bottlenecks Protein production: cell-based expression systems for recombinant proteins purification from natural sources production in vitro by cell-free translation systems synthetic methods for peptides Immobilization surfaces and array formats: Common o physical supports s include glass slides, silicon, microwells, nitrocellulose or PVDF membranes, microbeads Protein immobilization should be: reproducible e applicable to proteins of different properties (size, charge, ) amenable to high throughput and automation, and compatible with retention of fully functional protein activity such that maintains correct protein orientation Array fabrication: robotic contact printing ink-jetting piezoelectric spotting photolithography

8 Protein Activity Arrays Panomics Transcription Factor Arrays: A set of biotin-labeled DNA binding oligonucleotides (TranSignal probe mix) is preincubated with any nuclear extract of interest to allow the formation of protein/dna (or TF/DNA) complexes; The protein/dna complexes are separated from the free probes; The probes in the complexes are then extracted and hybridized to the TranSignal Array. Signals can be detected using either x-ray film or chemi-luminescent imaging. All reagents for HRP-based chemiluminescent i detection ti are included. d Source: Panomics, Inc.

9 Protein Activity Arrays Gel ShiftAssay Protein Array Source: Panomics, Inc.

10 2D Gel Electrophoresis + Mass Spectrometry Meyer et al Amino Acids Jul 13.

11 2D Gel Electrophoresis Protein Resolution Bandara & Kennedy (2002)

12 2D Gel Electrophoresis Protein Resolution Courtesy of Bio-Rad Courtesy of Bio-Rad Courtesy of Fermentas

13 2D Gel Electrophoresis Image Analysis Courtesy of Decodon Courtesy of Alphainnotech

14 2D Gel Electrophoresis Mass Spectrometry Source: UNC Proteomics Core Facility

15 Imag izona Proteomi University of Ari e courtesy of U ics Core SEQUEST is a program that uses raw peptide MS/MS data (off TSQ-7000 or LCQ) to identify unknown proteins. It works by searching protein and nucleotide databases (in FASTA format) on the web for peptides that match the molecular weight of the unknown peptides produced by digestion of your protein(s) of interest. Theoretical MS/MS spectra are then generated and a score is given to each one. The top 500 scored theoretical peptides are retained and a cross correlation analysis is then performed between the un-interpreted MS/MS spectra (real MS/MS spectra) of unknown peptides with each of the retained theoretical MS/MS spectra. Highly correlated spectra result in identification of the peptide sequences and multiple peptide identification and thus determine the protein and organism of origin corresponding to the unknown protein sample.

16 Bandara & Kennedy (2002)

17 SHOTGUN PROTEOMICS Proteins are analyzed by standard shotgun proteomics, beginning with tryptic digest of a protein mixture, liquid chromatographic separation of the mixture (2D HPLC), analysis of peptide masses by mass spectrometry (MS) and fragmentation of peptides and subsequent analysis of the fragmentation spectra (MS/MS). Each step introduces bias into the peptides ultimately interpreted from the analysis, thereby affecting the probability p ij of observing each peptide j from protein i. APEX involves training a classifier to estimate O i, the prior estimate of the number of unique peptides expected from a given protein during such an experiment. By correcting for O i, the number of peptides observed per protein thereby provides an estimate of the protein's abundance. HPLC, high performance liquid chromatography. Nature Biotechnology 25, (2007)

18 Isotope Coded Affinity Tag (ICAT) Analysis Bandara & Kennedy (2002)

19

20 SELDI Analysis Perticoin et al., Toxicologic Pathology, 32(Suppl. 1): , 2004

21 Representative raw spectra and gel-view (grey-scale) of serum from a normal donor, and from patients with either BPH (benign prostate hyperplasia) or prostate cancer (PCA) using the IMAC3-Cu Cu chip chemistry From:

22 Courtesy CIPHERGEN The upregulated 11.9 kda biomarker from the TMPD-treated rats was searched via Tagldent (SWISS-PROT), yielding a tentative identity as parvalbumin-alpha. This candidate was subsequently purified, peptide mapped and searched to confirm the identity. Parvalbumin is involved in muscle homeostasis.

23 Limitations, Challenges and Bottlenecks Resolution: number of proteins that can be separated/distinguished (500,000?!?) pi resolution mass resolution (gels and mass spectrometry) Amount of the protein in the sample: too little to be seen on a 2D gel? too little to be extracted and digested? Protein solubility Database searching and peptide identification Bandara & Kennedy (2002)

24 Schneider LV, Hall MP. Drug Discov Today :

25

26 T di i l l t h ti l i f t li t t l t i Th t i t d H 3 10 Two-dimensional electrophoretic analysis of rat liver total proteins. The proteins were separated on a ph 3 10 nonlinear IPG strip (left), or ph 4-7 IPG strip (right), followed by a 10% SDS polyacrylamide gel. The gel was stained with Coomassie blue. The spots were analyzed by MALDI-MS. The proteins identified are designated with the accession numbers of the corresponding database. From Fountoulakis & Suter (2002)

27 Two dimensional electrophoretic analysis of rat liver cytosolic proteins The proteins were separated on a ph Two-dimensional electrophoretic analysis of rat liver cytosolic proteins. The proteins were separated on a ph 3 10 nonlinear IPG strip (left), or ph 5 6 IPG strip (right), followed by a 10% SDS polyacrylamide gel. The spots were analyzed by MALDI-MS. The proteins identified are designated with the accession numbers of the corresponding database. From Fountoulakis & Suter (2002)

28 Summary of the 2-D gel electrophoresis data In total, 273 different gene products were identified from all gels: 65 gene products were only detected in the gels carrying total 52 in the gels carrying cytosolic remaining proteins were found in both samples 45 proteins out of the 62 found in the gels carrying total protein samples were detected in the broad ph range 3 10 gel, 11 in the narrow ph range and nine in both types of gels 52 proteins only detected in the gels carrying the cytosolic fraction, except for 6 which were found in the broad ph range 3 10 gel, were found in one of the narrow ph range gels only (narrow ph range strips helped to detect 46 proteins not found in the broad range gels) Protein distribution was based on the protein identification by mass spectrometry and may not be complete due to: spot loss during automatic excision peptide loss mainly from weak spots spot overlapping small protein size About 5000 spots were excised from 13 2-D gels, 5 carrying total and 8 carrying cytosolic proteins. The analysis resulted in the identification of about 3000 proteins, which were the products of 273 different genes From Fountoulakis & Suter (2002)

29 Summary of the 2-D gel electrophoresis data From Fountoulakis & Suter (2002)

30

31 Animals: Male Wistar rats (10 12 weeks, bw: 225±8 g) Treatment: Bromobenzene (i.p., 5.0 mmol/kg bw) dissolved in corn oil (40% v/v) Duration of treatment: 24 hrs The bromobenzene dose was hepatotoxic, and this was confirmed by the finding of a nearly complete glutathione depletion at 24 hr after bromobenzene administration. The low level of oxidised (GSSG) relative to reduced glutathione (GSH) indicates that the depletion is primarily due to conjugation and to a much lesser extent due to oxidation of glutathione. The bromobenzene administration resulted in on average 7% decrease in body weight after 24 hr. From: Heijne et al. (2003)

32 Gene Expression Profiling Liver samples, total RNA (50 g/array y experiment) cdna microarrays (3000 genes) Reference sample: pooled RNA from liver (~50% w/w), kidneys, lungs, brain, thymus, testes, spleen, heart, and muscle of untreated Wistar rats Duplicated microarray/sample 2-Fold cutoff (p<0.01) relative to the vehicle control: 32 genes were found to be significantly upregulated and 17 were repressed following bromobenzene treatment 1.5-Fold cutoff (p<0.01) relative to the vehicle control: 63 genes were found to be significantly ifi upregulated and 35 genes were repressed following bromobenzene treatment Functional groups: Drug metabolism Glutathione metabolism Oxidative stress Acute phase response Protein synthesis Protein degradation Others From: Heijne et al. (2003)

33 Glutathione metabolism: Oxidative stress: From: Heijne et al. (2003)

34 Acute phase response: From: Heijne et al. (2003)

35 Protein Expression Profiling 3 two-dimensional gels were prepared from each sample A reference protein pattern contained 1124 protein spots 24 proteins were differentially expressed (BB or Corn oil) From: Heijne et al. (2003)

36 Liver is unique in its capability to regenerate after an injury. Liver regeneration after a 2/3 partial hepatectomy served as a classical model and is adopted frequently to study the mechanism of liver regeneration. In the present study, semi quantitative analysis of protein expression in mouse liver regeneration following partial hepatectomy was performed using an itraq technique. Proteins from pre PHx control livers and livers regenerating g for 24, 48 and 72 h were extracted and inspected using 4 plex isotope labeling, followed by liquid chromatography fractionation, mass spectrometry and statistical differential analysis. A total of 827 proteins were identified in this study. There were 270 proteins for which quantitative information was available at all the time points in both biologically duplicate experiments. Among the 270 proteins, Car3, Mif, Adh1, Lactb2, Fabp5, Es31, Acaa1b and LOC were consistently down regulated, and Mat1a, Dnpep, Pabpc1, Apoa4, Oat, Hpx, Hp and Mt1 were up regulated by a factor of at least 1.5 from that of the controls at one time point or more. The regulation of each differential protein was also demonstrated by monitoring its time dependent expression changes during the regenerating process. We believe this is the first report to profile the protein changes in liver regeneration utilizing the itraq proteomic technique.

37

38 Proteome Res., 5 (7), , 2006 Systems Toxicology: Integrated Genomic, Proteomic and Metabonomic Analysis of Methapyrilene Induced Hepatotoxicity in the Rat Andrew Craig, James Sidaway, Elaine Holmes, Terry Orton, David Jackson, Rachel Rowlinson, Janice Nickson, Robert Tonge, Ian Wilson, and Jeremy Nicholson Abstract: Administration of high doses of the histamine antagonist methapyrilene to rats causes periportal liver necrosis. The mechanism of toxicity is ill-defined and here we have utilized an integrated systems approach to understanding the toxic mechanisms by combining proteomics, metabonomics by 1H NMR spectroscopy and genomics by microarray gene expression profiling. Male rats were dosed with methapyrilene for 3 days at 150 mg/kg/day, which was sufficient to induce liver necrosis, or a subtoxic dose of 50 mg/kg/day. Urine was collected over 24 h each day, while blood and liver tissues were obtained at 2 h after the final dose. The resulting data further define the changes that occur in signal transduction and metabolic pathways during methapyrilene hepatotoxicity, revealing modification of expression levels of genes and proteins associated with oxidative stress and a change in energy usage that is reflected in both gene/protein expression patterns and metabolites. The difficulties of combining and interpreting multi-omic data are considered.

39 Methapyrilene-induced liver injury in the rat Vehicle 10 mg/kg, 7 days 100 mg/kg, 7 days 100 mg/kg, 7 days Hamadeh et al 2002 Tox Path

40 Systems Toxicology: Integrated Genomic, Proteomic and Metabonomic Analysis of Methapyrilene Induced Hepatotoxicity in the Rat Proteins altered and identified between control and methapyrilene dosed groups. Proteins are numbered Ex where elevated and Rx where reduced. Average standard 1H NMR spectra of liver from each treatment group. This figure shows clearly dose related elevations and composition changes in fatty acid species

41 Systems Toxicology: Integrated Genomic, Proteomic and Metabonomic Analysis of Methapyrilene Induced Hepatotoxicity in the Rat

42 Systems Toxicology: Integrated Genomic, Proteomic and Metabonomic Analysis of Methapyrilene Induced Hepatotoxicity in the Rat Our aim was to determine the impact of drug toxicity on hepatic metabolic pathways and also ascertain whether a multiomic i systems biology approach would result in improved understanding di of the mechanism of hepatotoxicity t it of the drug The combination of information from gene, protein and metabolite levels provides an integrated picture of the response to methapyrilene-induced hepatotoxicity with mutually supporting and mutually validating evidence arising from each biomolecular level. As expected there were several instances where genes and proteins, either encoded by the same gene or by other genes within the same pathway, were both co regulated by methapyrilene toxicity, and sometimes this was in concert with an associated metabolic product However: Strategy of parallel omic data sets: It should be noted that alterations in expression of genes or enzyme levels and modification of protein forms, while suggesting a potential target of toxic effects, do not imply that function or activity must be altered Alterations to metabolic profiles reflect function and so may serve to aid interpretation of corresponding gene expression and proteomic analyses Furthermore, as metabolites unlike genes do not suffer the problem of orthology, observed metabolic effects are likely to be highly conserved between species and integrated systems approaches applied to two species may be one framework within which to reconcile and understand the similarities and differences in genetic wiring of common biological processes between different species. Issue of experimental design: looking at time points where toxicity is already well developed mitigates against obtaining a clear understanding of the temporal dynamics of the mechanism, especially as changes at the gene, protein and metabolite level may proceed at different rates and on different time scales. As such we might expect highly non linear relationships between the concentrations of various species at the different levels of biomolecular organization Issue of molecular resolution: we detected 100s of gene expression changes compared to the relatively small number of changes detected by the other two technologies. It may thus be likely that insufficient detail was obtained at each biomolecular level to elaborate fully on mechanism of methapyrilene toxicity Statistical difficulties: Since each data type usually requires tailored preprocessing (normalization, transformation, scaling, etc.) combining multiple data sets presents a significant analytical challenge. Here, we have performed a separate analysis at the gene, protein, and metabolite level and integrated the knowledge gained from each data set to uncover pathways which responded to the methapyrilene-induced toxicity.

Proteomics. Areas of Application for Proteomics. Most Commonly Used Proteomics Techniques: Limitations: Examples

Proteomics. Areas of Application for Proteomics. Most Commonly Used Proteomics Techniques: Limitations: Examples Proteomics Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Antibody arrays Protein activity arrays 2-D gels ICAT technology SELDI Limitations: protein sources surfaces and

More information

Proteomics. Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Limitations: Examples

Proteomics. Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Limitations: Examples Proteomics Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Antibody arrays Protein activity arrays 2-D gels ICAT technology SELDI Limitations: protein sources surfaces and

More information

Areas of Application for Proteomics Most Commonly Used Proteomics Techniques:

Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Proteomics Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Antibody arrays Protein activity arrays 2-D gels ICAT technology SELDI Limitations: Examples protein sources surfaces

More information

Areas of Application for Proteomics Most Commonly Used Proteomics Techniques:

Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Proteomics Areas of Application for Proteomics Most Commonly Used Proteomics Techniques: Antibody arrays Protein activity arrays 2-D gels ICAT technology SELDI Limitations: Examples protein sources surfaces

More information

Strategies in proteomics

Strategies in proteomics Strategies in proteomics Systems biology - understand cellpathways, network, and complex interacting (includes Genomics, Proteomics, Metabolomics..) Biological processes - characterize protein complexes,

More information

SGN-6106 Computational Systems Biology I

SGN-6106 Computational Systems Biology I SGN-6106 Computational Systems Biology I A View of Modern Measurement Systems in Cell Biology Kaisa-Leena Taattola 21.2.2007 1 The cell a complex system (Source: Lehninger Principles of Biochemistry 4th

More information

Proteomics and some of its Mass Spectrometric Applications

Proteomics and some of its Mass Spectrometric Applications Proteomics and some of its Mass Spectrometric Applications What? Large scale screening of proteins, their expression, modifications and interactions by using high-throughput approaches 2 1 Why? The number

More information

Advances in analytical biochemistry and systems biology: Proteomics

Advances in analytical biochemistry and systems biology: Proteomics Advances in analytical biochemistry and systems biology: Proteomics Brett Boghigian Department of Chemical & Biological Engineering Tufts University July 29, 2005 Proteomics The basics History Current

More information

Enhancers mutations that make the original mutant phenotype more extreme. Suppressors mutations that make the original mutant phenotype less extreme

Enhancers mutations that make the original mutant phenotype more extreme. Suppressors mutations that make the original mutant phenotype less extreme Interactomics and Proteomics 1. Interactomics The field of interactomics is concerned with interactions between genes or proteins. They can be genetic interactions, in which two genes are involved in the

More information

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1 CAP 5510-9 BIOINFORMATICS Su-Shing Chen CISE 10/5/2005 Su-Shing Chen, CISE 1 Basic BioTech Processes Hybridization PCR Southern blotting (spot or stain) 10/5/2005 Su-Shing Chen, CISE 2 10/5/2005 Su-Shing

More information

Proteomics And Cancer Biomarker Discovery. Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar. Overview. Cancer.

Proteomics And Cancer Biomarker Discovery. Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar. Overview. Cancer. Proteomics And Cancer Biomarker Discovery Dr. Zahid Khan Institute of chemical Sciences (ICS) University of Peshawar Overview Proteomics Cancer Aims Tools Data Base search Challenges Summary 1 Overview

More information

DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS. September, 2011

DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS. September, 2011 DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS September, 2011 1 CAPRION PROTEOMICS Leading proteomics-based service provider - Biomarker and target discovery

More information

Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry

Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry Clinical proteomics is the application of proteomic approach to the field of medicine. Proteome of an organism changes

More information

Outline and learning objectives. From Proteomics to Systems Biology. Integration of omics - information

Outline and learning objectives. From Proteomics to Systems Biology. Integration of omics - information From to Systems Biology Outline and learning objectives Omics science provides global analysis tools to study entire systems How to obtain omics - What can we learn Limitations Integration of omics - In-class

More information

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets)

Kinetics Review. Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) Quiz 1 Kinetics Review Tonight at 7 PM Phys 204 We will do two problems on the board (additional ones than in the problem sets) I will post the problems with solutions on Toolkit for those that can t make

More information

Proteomics and Cancer

Proteomics and Cancer Proteomics and Cancer Japan Society for the Promotion of Science (JSPS) Science Dialogue Program at Niitsu Senior High School Niitsu, Niigata September 4th 2006 Vladimir Valera, M.D, PhD JSPS Postdoctoral

More information

Bioinformatics Introduction to genomics and proteomics II

Bioinformatics Introduction to genomics and proteomics II Bioinformatics Introduction to genomics and proteomics II ulf.schmitz@informatik.uni-rostock.de Bioinformatics and Systems Biology Group www.sbi.informatik.uni-rostock.de Ulf Schmitz, Introduction to genomics

More information

From Proteomics to Systems Biology. Integration of omics - information

From Proteomics to Systems Biology. Integration of omics - information From Proteomics to Systems Biology Integration of omics - information Outline and learning objectives Omics science provides global analysis tools to study entire systems How to obtain omics - data What

More information

Computing with large data sets

Computing with large data sets Computing with large data sets Richard Bonneau, spring 2009 Lecture 14 (week 8): genomics 1 Central dogma Gene expression DNA RNA Protein v22.0480: computing with data, Richard Bonneau Lecture 14 places

More information

Electrophoresis and transfer

Electrophoresis and transfer Electrophoresis and transfer Electrophoresis Cation = positively charged ion, it moves toward the cathode (-) Anion = negatively charged ion, it moves toward the anode (+) Amphoteric substance = can have

More information

Metabolomics S.M.Shotorbani, V. A. Suliman

Metabolomics S.M.Shotorbani, V. A. Suliman 13 International Journal of Advance Research, IJOAR.org Volume 1, Issue 1, January 2013, Online: Metabolomics S.M.Shotorbani, V. A. Suliman ABSTRACT A brief review on metabolomics, a new field being explored,

More information

Lecture 8: Affinity Chromatography-III

Lecture 8: Affinity Chromatography-III Lecture 8: Affinity Chromatography-III Key words: Chromatography; Affinity chromatography; Protein Purification During this lecture, we shall be studying few more examples of affinity chromatography. The

More information

LECTURE-3. Protein Chemistry to proteomics HANDOUT. Proteins are the most dynamic and versatile macromolecules in a living cell, which

LECTURE-3. Protein Chemistry to proteomics HANDOUT. Proteins are the most dynamic and versatile macromolecules in a living cell, which LECTURE-3 Protein Chemistry to proteomics HANDOUT PREAMBLE Proteins are the most dynamic and versatile macromolecules in a living cell, which regulates essential activities of the cell. The classical protein

More information

Motivation From Protein to Gene

Motivation From Protein to Gene MOLECULAR BIOLOGY 2003-4 Topic B Recombinant DNA -principles and tools Construct a library - what for, how Major techniques +principles Bioinformatics - in brief Chapter 7 (MCB) 1 Motivation From Protein

More information

Proteomics. Manickam Sugumaran. Department of Biology University of Massachusetts Boston, MA 02125

Proteomics. Manickam Sugumaran. Department of Biology University of Massachusetts Boston, MA 02125 Proteomics Manickam Sugumaran Department of Biology University of Massachusetts Boston, MA 02125 Genomic studies produced more than 75,000 potential gene sequence targets. (The number may be even higher

More information

2D gel Western blotting using antibodies against ubiquitin, SUMO and acetyl PTM

2D gel Western blotting using antibodies against ubiquitin, SUMO and acetyl PTM 2D gel Western blotting using antibodies against ubiquitin, SUMO and acetyl PTM Nancy Kendrick, Jon Johansen & Matt Hoelter, Kendrick Labs Inc www.kendricklabs.com Talk Outline Significance Method description

More information

Towards unbiased biomarker discovery

Towards unbiased biomarker discovery Towards unbiased biomarker discovery High-throughput molecular profiling technologies are routinely applied for biomarker discovery to make the drug discovery process more efficient and enable personalised

More information

Selected Techniques Part I

Selected Techniques Part I 1 Selected Techniques Part I Gel Electrophoresis Can be both qualitative and quantitative Qualitative About what size is the fragment? How many fragments are present? Is there in insert or not? Quantitative

More information

Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes

Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes The PRIME lab and AMS Importance of protein complexes in biology Methods for isolation of protein complexes In

More information

11/22/13. Proteomics, functional genomics, and systems biology. Biosciences 741: Genomics Fall, 2013 Week 11

11/22/13. Proteomics, functional genomics, and systems biology. Biosciences 741: Genomics Fall, 2013 Week 11 Proteomics, functional genomics, and systems biology Biosciences 741: Genomics Fall, 2013 Week 11 1 Figure 6.1 The future of genomics Functional Genomics The field of functional genomics represents the

More information

Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice

Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice Mattias Rantalainen, Olivier Cloarec, Olaf Beckonert, I. D. Wilson, David Jackson, Robert Tonge,

More information

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Genes can be regulated at many levels Usually, gene regulation, are referring to transcriptional

More information

Capabilities & Services

Capabilities & Services Capabilities & Services Accelerating Research & Development Table of Contents Introduction to DHMRI 3 Services and Capabilites: Genomics 4 Proteomics & Protein Characterization 5 Metabolomics 6 In Vitro

More information

What are proteomics? And what can they tell us about seed maturation and germination?

What are proteomics? And what can they tell us about seed maturation and germination? Danseed Symposium Kobæk Strand, Skelskør 14 March, 2017 What are proteomics? And what can they tell us about seed maturation and germination? Ian Max Møller Department of Molecular Biology and Genetics

More information

MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1. Lecture 25: Mass Spectrometry Applications

MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1. Lecture 25: Mass Spectrometry Applications MBios 478: Mass Spectrometry Applications [Dr. Wyrick] Slide #1 Lecture 25: Mass Spectrometry Applications Measuring Protein Abundance o ICAT o DIGE Identifying Post-Translational Modifications Protein-protein

More information

Computational methods in bioinformatics: Lecture 1

Computational methods in bioinformatics: Lecture 1 Computational methods in bioinformatics: Lecture 1 Graham J.L. Kemp 2 November 2015 What is biology? Ecosystem Rain forest, desert, fresh water lake, digestive tract of an animal Community All species

More information

Blot: a spot or stain, especially of ink on paper.

Blot: a spot or stain, especially of ink on paper. Blotting technique Blot: a spot or stain, especially of ink on paper. 2/27 In molecular biology and genetics, a blot is a method of transferring proteins, DNA or RNA, onto a carrier (for example, a nitrocellulose,pvdf

More information

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha Site directed mutagenesis, Insertional and Deletion Mutagenesis Mitesh Shrestha Mutagenesis Mutagenesis (the creation or formation of a mutation) can be used as a powerful genetic tool. By inducing mutations

More information

Design. Construction. Characterization

Design. Construction. Characterization Design Construction Characterization DNA mrna (messenger) A C C transcription translation C A C protein His A T G C T A C G Plasmids replicon copy number incompatibility selection marker origin of replication

More information

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology.

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology. G16B BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY Methods or systems for genetic

More information

Microarray Industry Products

Microarray Industry Products Via Nicaragua, 12-14 00040 Pomezia (Roma) Phone: +39 06 91601628 Fax: +39 06 91612477 info@lifelinelab.com www.lifelinelab.com Microarray Industry Products Page 10 NBT / BCPIP Chromogenic phosphatase

More information

Molecular characterization, detection & quantitation of biological products Purin Charoensuksai, PhD

Molecular characterization, detection & quantitation of biological products Purin Charoensuksai, PhD Molecular characterization, detection & quantitation of biological products Purin Charoensuksai, PhD Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University Example of critical checkpoints

More information

Strategies for Quantitative Proteomics. Atelier "Protéomique Quantitative" La Grande Motte, France - June 26, 2007

Strategies for Quantitative Proteomics. Atelier Protéomique Quantitative La Grande Motte, France - June 26, 2007 Strategies for Quantitative Proteomics Atelier "Protéomique Quantitative", France - June 26, 2007 Bruno Domon, Ph.D. Institut of Molecular Systems Biology ETH Zurich Zürich, Switzerland OUTLINE Introduction

More information

ProductInformation TECHNICAL BULLETIN MULTIPLE TISSUE NORTHERN BLOT, MOUSE. Product No. BLOT-2 Technical Bulletin No. MB-865 February 2000

ProductInformation TECHNICAL BULLETIN MULTIPLE TISSUE NORTHERN BLOT, MOUSE. Product No. BLOT-2 Technical Bulletin No. MB-865 February 2000 MULTIPLE TISSUE NORTHERN BLOT, MOUSE Product No. BLOT-2 Technical Bulletin No. MB-865 February 2000 ProductInformation TECHNICAL BULLETIN Product Description Sigma s Mouse Multiple Tissue Northern Blot

More information

Gene Expression Technology

Gene Expression Technology Gene Expression Technology Bing Zhang Department of Biomedical Informatics Vanderbilt University bing.zhang@vanderbilt.edu Gene expression Gene expression is the process by which information from a gene

More information

ENCODE DCC Antibody Validation Document

ENCODE DCC Antibody Validation Document ENCODE DCC Antibody Validation Document Date of Submission 09/12/12 Name: Trupti Kawli Email: trupti@stanford.edu Lab Snyder Antibody Name: SREBP1 (sc-8984) Target: SREBP1 Company/ Source: Santa Cruz Biotechnology

More information

Proteomics 6/4/2009 WESTERN BLOT ANALYSIS

Proteomics 6/4/2009 WESTERN BLOT ANALYSIS SDS-PAGE (PolyAcrylamide Gel Electrophoresis) Proteomics WESTERN BLOT ANALYSIS Presented by: Nuvee Prapasarakul Veterinary Microbiology Chulalongkorn University Proteomics has been said to be the next

More information

Tooling up for Functional Genomics

Tooling up for Functional Genomics Tooling up for Functional Genomics Michael Abberton, Iain Donnison, Phil Morris, Helen Ougham, Mark Robbins, Howard Thomas From model to crop species 6 Genomes and genome mapping 7 The transcriptome 7

More information

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis Gene expression analysis Biosciences 741: Genomics Fall, 2013 Week 5 Gene expression analysis From EST clusters to spotted cdna microarrays Long vs. short oligonucleotide microarrays vs. RT-PCR Methods

More information

Metabolomics: Techniques and Applications ABRF

Metabolomics: Techniques and Applications ABRF Metabolomics: Techniques and Applications ABRF Sacramento, CA March 23, 2010 Overview Metabolomics Definitions Representative Project Sarcosine, a prostatic cancer biomarker Technical overview/ How we

More information

The Five Key Elements of a Successful Metabolomics Study

The Five Key Elements of a Successful Metabolomics Study The Five Key Elements of a Successful Metabolomics Study Metabolomics: Completing the Biological Picture Metabolomics is offering new insights into systems biology, empowering biomarker discovery, and

More information

Proteomics and Vaccine Potency Testing

Proteomics and Vaccine Potency Testing Proteomics and Vaccine Potency Testing Louisa B. Tabatabai, PhD Respiratory Diseases of Livestock Research Unit National Animal Disease Center, ARS, USDA, Ames, Iowa What is proteomics Methodologies of

More information

Exam MOL3007 Functional Genomics

Exam MOL3007 Functional Genomics Faculty of Medicine Department of Cancer Research and Molecular Medicine Exam MOL3007 Functional Genomics Thursday December 20 th 9.00-13.00 ECTS credits: 7.5 Number of pages (included front-page): 5 Supporting

More information

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology BIOTECHNOLOGY Subject Code: BT Course Structure Sections/Units Section A Section B Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section C Section D Section E Topics Engineering Mathematics General

More information

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry Lecture 5: 8/31 CHAPTER 5 Techniques in Protein Biochemistry Chapter 5 Outline The proteome is the entire set of proteins expressed and modified by a cell under a particular set of biochemical conditions.

More information

BCH 462. Western Blot

BCH 462. Western Blot BCH 462 Western Blot Blotting Immunoassay: A test that uses antibody and antigen complexes [immuno-complexes] as a means of generating measurable results. Antigens [Ag]: A substance that when introduced

More information

The best proteomics: combination of upfront reduction of sample complexity, reproducible resolution, and effective follow up

The best proteomics: combination of upfront reduction of sample complexity, reproducible resolution, and effective follow up The best proteomics: combination of upfront reduction of sample complexity, reproducible resolution, and effective follow up Helen Kim, Ph.D. Dept of Pharmacology & Toxicology University of Alabama at

More information

Quantitative mass spec based proteomics

Quantitative mass spec based proteomics Quantitative mass spec based proteomics Tuula Nyman Institute of Biotechnology tuula.nyman@helsinki.fi THE PROTEOME The complete protein complement expressed by a genome or by a cell or a tissue type (M.

More information

Lecture #1. Introduction to microarray technology

Lecture #1. Introduction to microarray technology Lecture #1 Introduction to microarray technology Outline General purpose Microarray assay concept Basic microarray experimental process cdna/two channel arrays Oligonucleotide arrays Exon arrays Comparing

More information

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS Application Note PROTEOMICS METABOLOMICS GENOMICS INFORMATICS GLYILEVALCYSGLUGLNALASERLEUASPARG CYSVALLYSPROLYSPHETYRTHRLEUHISLYS A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery

More information

Improving Productivity with Applied Biosystems GPS Explorer

Improving Productivity with Applied Biosystems GPS Explorer Product Bulletin TOF MS Improving Productivity with Applied Biosystems GPS Explorer Software Purpose GPS Explorer Software is the application layer software for the Applied Biosystems 4700 Proteomics Discovery

More information

Blotting Techniques (Southern blot, Northern blot, Western blot, and Eastern blot)

Blotting Techniques (Southern blot, Northern blot, Western blot, and Eastern blot) Blotting Techniques (Southern blot, Northern blot, Western blot, and Eastern blot) Masheal Aljumaah SEP 2018 Learning Objectives: What is blotting? Blotting Techniques Types. Applications for each technique.

More information

Metabolomics. Primary Molecules. Secondary Molecules TMAO. creatinine citrate. hippurate. allantoin creatinine taurine. urea water.

Metabolomics. Primary Molecules. Secondary Molecules TMAO. creatinine citrate. hippurate. allantoin creatinine taurine. urea water. Metabolomics Nature Reviews: Drug Discovery Nicholson et al. (22) Efficacy Toxicity Primary Molecules Secondary Molecules Filtration Resorption Dilution Concentration TMAO hippurate allantoin creatinine

More information

Application Note TOF/MS

Application Note TOF/MS Application Note TOF/MS New Level of Confidence for Protein Identification: Results Dependent Analysis and Peptide Mass Fingerprinting Using the 4700 Proteomics Discovery System Purpose The Applied Biosystems

More information

Approved by: Thomas M. Driskill, Jr. President & CEO

Approved by: Thomas M. Driskill, Jr. President & CEO HAWAII HEALTH SYSTEMS C O R P O R A T I O N Touching Lives Everyday" Policies and Procedures Subject: Unlisted Laboratory Procedure Codes Quality Through Compliance Issued by: Corporate Compliance Committee

More information

Genomics and Proteomics *

Genomics and Proteomics * OpenStax-CNX module: m44558 1 Genomics and Proteomics * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

Nature Reviews: Drug Discovery Nicholson et al. (2002)

Nature Reviews: Drug Discovery Nicholson et al. (2002) Metabolomics Nature Reviews: Drug Discovery Nicholson et al. (2002) Efficacy Toxicity Primary Molecules Secondary Molecules Filtration Resorption Dilution Concentration TMAO hippurate allantoin creatinine

More information

Moc/Bio and Nano/Micro Lee and Stowell

Moc/Bio and Nano/Micro Lee and Stowell Moc/Bio and Nano/Micro Lee and Stowell Moc/Bio-Lecture GeneChips Reading material http://www.gene-chips.com/ http://trueforce.com/lab_automation/dna_microa rrays_industry.htm http://www.affymetrix.com/technology/index.affx

More information

MagSi Beads. Magnetic Silica Beads for Life Science and Biotechnology study

MagSi Beads. Magnetic Silica Beads for Life Science and Biotechnology study MagSi Beads Magnetic Silica Beads for Life Science and Biotechnology study MagnaMedics Diagnostics B.V. / Rev. 9.2 / 2012 Wide range of products for numerous applications MagnaMedics separation solutions

More information

Supplementary Figure 1. Determination of the purity of CP. a, SDS-PAGE of CP and CP- PTX conjugate, and b, HPLC trace of purified CP.

Supplementary Figure 1. Determination of the purity of CP. a, SDS-PAGE of CP and CP- PTX conjugate, and b, HPLC trace of purified CP. Supplementary Figure 1. Determination of the purity of CP. a, SDS-PAGE of CP and CP- PTX conjugate, and b, HPLC trace of purified CP. Supplementary Figure 2. Synthesis of CP-PTX conjugate. Supplementary

More information

Identification of human serum proteins detectable after Albumin removal with Vivapure Anti-HSA Kit

Identification of human serum proteins detectable after Albumin removal with Vivapure Anti-HSA Kit Andreas Kocourek, Pieter Eyckerman, Robert Zeidler, Pascal Bolon and Birgit Thome-Kromer Introduction The analysis of the complete proteome is a major interest of many researchers. Of particular importance

More information

Proteomics Background and clinical utility

Proteomics Background and clinical utility Proteomics Background and clinical utility H.H. Helgason MD Antoni van Leeuwenhoek Hospital The Netherlands Cancer Institute Amsterdam Introduction Background Definitions Protein biomarkers Technical aspects

More information

Introduction to Proteomics

Introduction to Proteomics Introduction to Proteomics Tasso Miliotis, PhD AstraZeneca R&D Gothenburg Translational Sciences tasso.miliotis@astrazeneca.com 1 Site Management Mölndal May 2008 Outline Drug Discovery AZ R&D Sample Preparation

More information

CENTER FOR BIOTECHNOLOGY

CENTER FOR BIOTECHNOLOGY CENTER FOR BIOTECHNOLOGY Keith A. McGee, Ph.D., Program Director Math and Science Building, 3 rd Floor 1000 ASU Drive #870 Phone: 601-877-6198 FAX: 601-877-2328 Degree Offered Required Admission Test M.

More information

HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT

HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT HOST CELL PROTEIN & BIOPROCESSING REAGENT DEVELOPMENT INTRODUCTION Biopharmaceuticals require products to be free of residual host cell protein (HCP) contaminants from the bioprocessing workflow. To evaluate

More information

The Biotechnology Toolbox

The Biotechnology Toolbox Chapter 15 The Biotechnology Toolbox Cutting and Pasting DNA Cutting DNA Restriction endonuclease or restriction enzymes Cellular protection mechanism for infected foreign DNA Recognition and cutting specific

More information

Lecture 23: Metabolomics Technology

Lecture 23: Metabolomics Technology MBioS 478/578 Bioinformatics Mark Lange Lecture 23: Metabolomics Technology Definitions and Background Technologies Nuclear Magnetic Resonance Mass Spectrometry General Introduction Fourier-Transform Mass

More information

Proteomics. Proteomics is the study of all proteins within organism. Challenges

Proteomics. Proteomics is the study of all proteins within organism. Challenges Proteomics Proteomics is the study of all proteins within organism. Challenges 1. The proteome is larger than the genome due to alternative splicing and protein modification. As we have said before we

More information

Microarray. Key components Array Probes Detection system. Normalisation. Data-analysis - ratio generation

Microarray. Key components Array Probes Detection system. Normalisation. Data-analysis - ratio generation Microarray Key components Array Probes Detection system Normalisation Data-analysis - ratio generation MICROARRAY Measures Gene Expression Global - Genome wide scale Why Measure Gene Expression? What information

More information

Medicinal Chemistry of Modern Antibiotics

Medicinal Chemistry of Modern Antibiotics Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2012 Lecture 5: Modern Target Discovery & MOA Thomas Hermann Department of Chemistry & Biochemistry University of California, San Diego Drug

More information

Medicinal Chemistry of Modern Antibiotics

Medicinal Chemistry of Modern Antibiotics Chemistry 259 Medicinal Chemistry of Modern Antibiotics Spring 2008 Lecture 5: Modern Target Discovery & MOA Thomas Hermann Department of Chemistry & Biochemistry University of California, San Diego Drug

More information

Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods

Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

Deoxyribonucleic Acid DNA

Deoxyribonucleic Acid DNA Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

Recent technology allow production of microarrays composed of 70-mers (essentially a hybrid of the two techniques)

Recent technology allow production of microarrays composed of 70-mers (essentially a hybrid of the two techniques) Microarrays and Transcript Profiling Gene expression patterns are traditionally studied using Northern blots (DNA-RNA hybridization assays). This approach involves separation of total or polya + RNA on

More information

Reach greater highs. (and lows ) with new protein ladder choices. Fermentas now sold as. Thermo Scientific

Reach greater highs. (and lows ) with new protein ladder choices. Fermentas now sold as. Thermo Scientific Introducing Thermo Scientific Pierce Prestained and Unstained s for easy protein molecular weight determination. Fermentas now sold as Thermo Scientific Reach greater highs (and lows ) with new protein

More information

2D separations and analysis of proteins in biological samples

2D separations and analysis of proteins in biological samples January 18, 2005 2D separations and analysis of proteins in biological samples Helen Kim 934-3880 helenkim@uab.edu McCallum Building, room 460 Jan 18, 2005 HelenKim/UAB/PharmTox 1 Learning objectives 2-D

More information

Progress and Future Directions in Integrated Systems Toxicology. Mary McBride Agilent Technologies

Progress and Future Directions in Integrated Systems Toxicology. Mary McBride Agilent Technologies Progress and Future Directions in Integrated Systems Toxicology Mary McBride Agilent Technologies 1 Toxicity testing tools of the late 20 th century Patchwork approach to testing dates back to the 1930

More information

Biomarker Discovery using Surface Plasmon Resonance Imaging

Biomarker Discovery using Surface Plasmon Resonance Imaging F e a t u r e A r t i c l e Feature Article Biomarker Discovery using Surface Plasmon Resonance Imaging Elodie LY-MORIN, Sophie BELLON, Géraldine MÉLIZZI, Chiraz FRYDMAN Surface Plasmon Resonance (SPR)

More information

Overview. Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis

Overview. Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis Expression Proteomics // Tools for Protein Separation and Analysis www.expressionproteomics.com 1 2 3 4 Overview Tools for Protein Sample Preparation, 2-D Electrophoresis, and Imaging and Analysis overview

More information

Chapter 10 Analytical Biotechnology and the Human Genome

Chapter 10 Analytical Biotechnology and the Human Genome Chapter 10 Analytical Biotechnology and the Human Genome Chapter Outline Enzyme tests and biosensors DNA-based tests DNA analysis technologies Human genome and genome-based analytical methods 1 Enzyme-based

More information

Agilent 3100 OFFGEL Fractionator pi-based fractionation of proteins and peptides with liquid-phase recovery

Agilent 3100 OFFGEL Fractionator pi-based fractionation of proteins and peptides with liquid-phase recovery Agilent 3100 OFFGEL Fractionator pi-based fractionation of proteins and peptides with liquid-phase recovery Achieve unprecedented sensitivity in LC/MS-based proteomics experiments Sample complexity and

More information

Basic protein and peptide science for proteomics. Henrik Johansson

Basic protein and peptide science for proteomics. Henrik Johansson Basic protein and peptide science for proteomics Henrik Johansson Proteins are the main actors in the cell Membranes Transport and storage Chemical factories DNA Building proteins Structure Proteins mediate

More information

2/5/16. Honeypot Ants. DNA sequencing, Transcriptomics and Genomics. Gene sequence changes? And/or gene expression changes?

2/5/16. Honeypot Ants. DNA sequencing, Transcriptomics and Genomics. Gene sequence changes? And/or gene expression changes? 2/5/16 DNA sequencing, Transcriptomics and Genomics Honeypot Ants "nequacatl" BY2208, Mani Lecture 3 Gene sequence changes? And/or gene expression changes? gene expression differences DNA sequencing, Transcriptomics

More information

Detecting and quantitating proteins on gels

Detecting and quantitating proteins on gels Detecting and quantitating proteins on gels Helen Kim Department of Pharmacology & Toxicology UAB Comprehensive Cancer Center Mass Spectrometry/Proteomics Shared Facility Purdue/UAB Botanicals Center for

More information

including, but not limited to:

including, but not limited to: *This Section is part of the original Request for Proposal # P08 080. The Contractor should provide the following eligible Scientific Biomedical Research Equipment, Reagents & Supplies including, but not

More information

27041, Week 02. Review of Week 01

27041, Week 02. Review of Week 01 27041, Week 02 Review of Week 01 The human genome sequencing project (HGP) 2 CBS, Department of Systems Biology Systems Biology and emergent properties 3 CBS, Department of Systems Biology Different model

More information

Methods for Working with DNA and RNA

Methods for Working with DNA and RNA Methods for Working with DNA and RNA 1. Gel electrophoresis A. Materials: agarose (large DNAs) vs. acrylamide (high resolution, DNA sequencing) B. Separated by its sieving property and charge: both are

More information

Systems Biology and Systems Medicine

Systems Biology and Systems Medicine CHAPTER 5 Systems Biology and Systems Medicine INTRODUCTION A new approach to biology, termed systems biology, has emerged over the past 15 years or so an approach that looks - - have transformed systems

More information

MATF Antigen Submission Details and Standard Project Deliverables

MATF Antigen Submission Details and Standard Project Deliverables MATF Antigen Submission Details and Standard Project Deliverables What we require when you submit your antigen: Proteins For a recombinant protein target, we require a minimum of 400µg soluble recombinant

More information