In vivo fast imaging and optogenetic manipulation using genetically-encoded fluorescent indicators and actuators. Serena Bovetti

Size: px
Start display at page:

Download "In vivo fast imaging and optogenetic manipulation using genetically-encoded fluorescent indicators and actuators. Serena Bovetti"

Transcription

1 In vivo fast imaging and optogenetic manipulation using genetically-encoded fluorescent indicators and actuators Serena Bovetti Istituto Italiano di Tecnologia Genova, Italy Bogliasco, June

2 Analyzing structure and function Ramon y Cajal ( ) 2P microscopy (1990-present) From

3 Analyzing structure and function Living cells Small elements High number millions glutamatergic cells just into the mouse neocortex 3D and the overall complexity of NS Light scattering tissue Fast signalling deflection of a light «ray» from its original direction and depend on refractive index of the structures that interact with the ray µm deep ms Non-stationary 3D From

4 From circuits to behaviour: how we do that? Circuits Behaviour How we do that? From

5 From circuits to behaviour: how we do that? Genetic and molecular tools Fluorescent molecules Cre-lox technology Viral vector based tools etc... specification Cell types Functional optical strategies assembly Readout Genes Circuits Optogenetics evolution physiology Probing Behaviour From

6 Outline 1- Optical functional indicators and actuators of cells activity using GCaMPs to monitor cell activity using opsins to manipulate cell activity 2- In vivo functional two-photon imaging: improving the temporal resolution of functional 2P imaging using scanless approach 3- Combining imaging methods with optical manipulation of cell activity 4- Future perspectives

7 Optical functional indicators of cell activity A first necessary step toward elucidating the basic principles underlying brain function is to precisely map the activity of individual cellular elements in space and time in vivo In the last 20 years, the development of multiphoton microscopy in combination with fluorescent activity reporters has provided a valuable tool to reach this goal Voltage indicators Calcium indicators

8 The Calcium Ion as an Indirect Reporter of Neuronal Activity Both neurons and glia display increase calcium concentration in response to neuronal activity One way to measure free cytosolic calcium variations optically is using molecules that change their fluorescence or absorbance properties upon calcium binding Synthetic dyes: OGB Fluo-2 Fluo-4... No labelling of specific cell population Acute loading Short life time Genetically encoded indicators: Camgoroo Pericams GCaMPs Expressed in cell type specific manner Allow chronic imaging

9 The Calcium Ion as an Indirect Reporter of Neuronal Activity Synthetic dyes: OGB Fluo-2 Fluo-4... No labelling of specific cell population Acute loading Short life time Genetically encoded indicators: Camgoroo Pericams GCaMPs Expressed in cell type specific manner Allow chronic imaging Biophysical properties: Affinity Dynamic range Selectivity Kinetics From Bovetti et al., 2014

10 The Calcium Ion as an Indirect Reporter of Neuronal Activity GCaMP structure M13 domain of the myosin light chain Ca2+ Calmodulin cpgfp Transgenic mouse lines Promoter specific expression Thy1-GCaMP6 CAMKII-GCaMP6 Cre-dependent expression (cre-lox technology) Promoter-lox-STOP-lox-GCaMP6 (i.e. CAG) Cre-mouse line (i.e.pv-cre) X Flex- GCaMP6 Adeno-associated virus (AAVs) Small (25 nm), Single-stranded DNA Viral vector delivery Each virus has characteristic tropism (targeting of cells) and spread from injection sites, in some cases via retrograde or anterograde transport of viral particles, which are important to consider when designing experiments. Different serotypes that influence virus tropism Now mix serotypes are available Small capacity for effective packaging (4.7 kb) Both anterograde and retrograde (depending on serotypes) transport Do not integrate into the host genome, remain as an episome (extragenomic circular DNA)

11 The Calcium Ion as an Indirect Reporter of Neuronal Activity GCaMP structure M13 domain of the myosin light chain Ca2+ Calmodulin cpgfp Transgenic mouse lines Promoter specific expression Thy1-GCaMP6 CAMKII-GCaMP6 Promoter specific expression Viral vector delivery AAV1.Syn.GCaMP6f.WPRE.SV40 serotype promoter indicator Cre-dependent expression (cre-lox technology) Promoter-lox-STOP-lox-GCaMP6 (i.e. CAG) Cre-dependent expression (cre-lox technology) AAV1.Syn.flex.GCaMP6f.WPRE.SV40 X Cre mouse line Flox-GCaMP6 WT or Cre mouse line ~10 13 GC/ml (tirtrate!!!) very low inj rate (20-50 nl/min)

12 The Calcium Ion as an Indirect Reporter of Neuronal Activity GCaMP structure M13 domain of the myosin light chain Ca2+ Calmodulin cpgfp Transgenic mouse lines Viral vector delivery Advantages: More homogeneous expression across brain regions Advantages: Higher expression Disadvantages: Low expression Disadvantages: Less homogeneous expression across brain regions

13 Bovetti et al., 2014 The Calcium Ion as an Indirect Reporter of Neuronal Activity AAV1.Syn.GCaMP6f.WPRE.SV40 AAV1.Syn.flexGCaMP6f.WPRE.SV40 Cre-expressing mouse lines WT

14 Optical manipulation of cell activity Optogenetics: combination of genetic and optical methods to cause or inhibit well defined events in specific cells or living tissue and behaving animals (Deisseroth, 2015) 1) Microbial opsins: proteins that directly elicits electrical current across cellular membranes in response to light (transduce photons into electrical current) Extra Intra Chow et al NphR Hyperpolarizating current Deisseroth 2015 Depolarizating current Arch, earch, earch3.0, ArchT NphR, NphR3.0 ChR2, ChETa, C1V1 Beltramo et al., 2013

15 Optical manipulation of cell activity Extra Intra Deisseroth 2015 Biophysical properties Efficiency of light absorption (cross-section) defined in term of extinction coefficient (ε max : how strongly a substance absorbs light at a given wavelength) and quantum efficiency (Φ: the fraction of absorbed photons that are efficacious in driving the relevant conformational change) Conductance and photocurrent Kinetics defined in term of turnover time of the photocycle Mutation at different residues change the biophysical properties of opsins

16 Optical manipulation of cell activity Methods for targeting sufficiently strong and specific opsin gene expression to well-defined cellular elements in the brain Thy1-ChR2 Thy1-eNphR... Transgenic mouse lines Promoter specific expression Promoter specific expression AAVs delivery AAV1.CAG.ChR2.EYFPWPRE.SV40 serotype promoter actuator reporter Cre-dependent expression (cre-lox technology) Promoter-lox-STOP-lox-ChR2 (i.e. CAG) Cre-dependent expression (cre-lox technology) AAV1.EF1.flex.ChR2.mCherry.WPRE.SV40 X Cre mouse line Flox-GCaMP6 WT or Cre mouse line ~10 13 GC/ml (tirtrate!!!) very low inj rate (20-50 nl/min)

17 Optical manipulation of cell activity Methods for targeting sufficiently strong and specific opsin gene expression to well-defined cellular elements in the brain Thy1-ChR2 Thy1-eNphR... Transgenic mouse lines Promoter specific expression Special attention to: AAVs delivery Membrane trafficking Targeting specific cellular compartments Cre-dependent expression (cre-lox technology) Promoter-lox-STOP-lox-ChR2 (i.e. CAG) X Cre mouse line Flox-GCaMP6 Prakash et al., 2012

18 Multiphoton microscopy A first necessary step toward elucidating the basic principles underlying brain function is to precisely map the activity of individual cellular elements in space and time in vivo In the last 20 years, the development of multiphoton microscopy in combination with fluorescent activity reporters has provided a valuable tool to reach this goal Multiphoton microscopy is a powerful technique based on non-linear interactions between photons and matter. The most commonly used multiphoton imaging procedure is the two-photon excitation microscopy.

19 absorption Multiphoton microscopy Multiphoton microscopy is a powerful technique based on non-linear interactions between photons and matter. The most commonly used multiphoton imaging procedure is the two-photon excitation microscopy. Linear microscopy: one photon is adsorbed by a fluorescence molecule and one single fluorescent photon is emitted Non-Linear microscopy: uses «higher order» lightmatter interactions involving multiple photons Excited state 1P fluorescence 2P 2P: rare event in which 2 photons interact with the same molecule at the same time (interval less then s) Maria Goppert-Mayer ( ) Nobel prize 1963 Ground state

20 Two-photon microscopy 2P fluorescence Longer wavelengths = less energy Longer wavelenghts = less subjected to scattering Longer wavelengths = deeper penetration Near-infrared light penetrates deeper into scattering tissue and is generally less phototoxic nm Visible spectral range

21 A two-photon microscope Raster scanning FOV Detection Excitation Bovetti et al., 2014 Pinhole increase peak intensity -concentration in time (pulsed excitation) 2P = 1P 2P

22 Laser scanning two-photon microscopy Laser scanning imaging of GCaMP6-expressing layer 2/3 neurons in the somatosensory cortex of the awake mouse imaging large field of view attaining high spatial resolution discriminating between different cell types Limited temporal resolution From

23 Cell sampling rate (Hz) How to Laser improve scanning to improve two-photon the acquisition microscopy speed Raster scanning i i + 1 Max acquisition frequency = 1/(t d *N + t m *(N-1)) t d : dwell time t m : time to move from point i to i+1 N: total number of points y N - 2 x Random access scanning N - 1 N N - 1 N - 2 y x N Number of cells

24 Development of a structured light microscope for fast imaging in vivo From Grunwald and Bock, 2010 Scanless or parallel illumination Dal Maschio et al., 2010 Dal Maschio et al., 2011 N-1 N-2 Dwell time = Exposure time y x N Max. acquisition frequency = Camera max. frame rate

25 Acknowledgements Tommaso Fellin, PI Claudio Moretti Andrea Antonini Angelo Forli Stefano Zucca Dania Vecchia Francesca Succol Angela De Stasi Marco Brondi Noemi Binini Stefano Varani Paolo Bonifazi Marco Dal Maschio Pasqualina Farisello Giulia D Urso Thanks for your attention

Two-photon microscopy for in vivo functional imaging

Two-photon microscopy for in vivo functional imaging Two-photon microscopy for in vivo functional imaging Serena Bovetti Department of Neuroscience and Brain Technologies Italian Institute of Technology Genova, Italy Analyzing structure and function 1900

More information

Optogenetics and Multiphoton Excitation. June 2014

Optogenetics and Multiphoton Excitation. June 2014 Optogenetics and Multiphoton Excitation June 2014 Optogenetics and Multiphoton Excitation (MPE) MPE is used in Optogenetics for the usual advantages related to nonlinear excitation: Deeper penetration

More information

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET)

Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Fluorescence quenching, Fluorescence anisotropy, Fluorescence resonance energy transfer (FRET) Timescale of fluorescence processes The excited electron decay possibilities k f k ph k q k t k ic Biophysics

More information

Magneto: remote control over neuronal activity and behaviour. Yvette Zarb Division of Neurosurgery

Magneto: remote control over neuronal activity and behaviour. Yvette Zarb Division of Neurosurgery Magneto: remote control over neuronal activity and behaviour Yvette Zarb Division of Neurosurgery Gene expression Studying the actions specific cells and gene products is essential in understanding their

More information

CENTER FOR BRAIN EXPERIMENT

CENTER FOR BRAIN EXPERIMENT CENTER FOR BRAIN EXPERIMENT Section of Brain Structure Associate Professor: ARII, Tatsuo, PhD 1967 Graduated from Tohoku University, Faculty of Science. Completed the doctoral course in Engineering, Nagoya

More information

Absorption of an electromagnetic wave

Absorption of an electromagnetic wave In vivo optical imaging?? Absorption of an electromagnetic wave Tissue absorption spectrum Extinction = Absorption + Scattering Absorption of an electromagnetic wave Scattering of an electromagnetic wave

More information

Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers

Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers Multiphoton Microscopy / Fiber Laser Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers Matthias Handloser, Tim Paasch-Colberg, Bernhard Wolfring TOPTICA Photonics

More information

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging Rice/TCU REU on Computational Neuroscience Fundamentals of Molecular Imaging June 2, 2009 Neal Waxham 713-500-5621 m.n.waxham@uth.tmc.edu Objectives Introduction to resolution in light microscopy Brief

More information

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Published as: Nat Methods. ; 9(2): 159 172. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Joanna Mattis 1,2,7, Kay M Tye 1,7, Emily A Ferenczi 1,2,7,

More information

A Brief History of Light Microscopy And How It Transformed Biomedical Research

A Brief History of Light Microscopy And How It Transformed Biomedical Research A Brief History of Light Microscopy And How It Transformed Biomedical Research Suewei Lin Office: Interdisciplinary Research Building 8A08 Email: sueweilin@gate.sinica.edu.tw TEL: 2789-9315 Microscope

More information

Class 7: Methods in Research By: Ray

Class 7: Methods in Research By: Ray Class 7: Methods in Research By: Ray Method in Brain Research 1. Non-Invasive (Human) o Imaging Computerized (Axial) Tomography (X-rays). Static pictures and high spatial resolution. Horizontal plane only.

More information

Targeting neurons and photons for optogenetics

Targeting neurons and photons for optogenetics f o c u s o n n e u r ot e c h n i q u e s r e v i e w Targeting neurons and photons for optogenetics Adam M Packer 1, Botond Roska 2 & Michael Häusser 1 Optogenetic approaches promise to revolutionize

More information

AAV Biosensors. Handbook and Product Information

AAV Biosensors. Handbook and Product Information AAV Biosensors Handbook and Product Information AAV Biosensors Handbook and Product Information Legal Statement of AAV Biosensor 1. AAV Biosensors are covered under US Patents #14/350,199; #8,629,256,

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Methods of Characterizing Neural Networks

Methods of Characterizing Neural Networks Methods of Characterizing Neural Networks Ashley Nord University of Minnesota Minneapolis, MN 55414 Advisors: Katsushi Arisaka, Adrian Cheng University of California Los Angeles Los Angeles, CA 90024 September

More information

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens for Deep Tissue Imaging of Living Specimens Tilman Franke* and Sebastian Rhode TILL Photonics GmbH, an FEI company, Lochhamer Schlag 21, D-82166 Gräfelfing, Germany *tilman.franke@fei.com Introduction

More information

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave Biophotonics - Imaging: X-ray, OCT, polarimetry, DOT, TIRF, photon migration, endoscopy, confocal microscopy, multiphoton microscopy, multispectral imaging - Biosensing: IR spectroscopy, fluorescence,

More information

Deisseroth: Stabilized Step Function Opsins [SSFO]: ChR2 (C128S/D156A) 3/17/2014 Page 1 of 10

Deisseroth: Stabilized Step Function Opsins [SSFO]: ChR2 (C128S/D156A) 3/17/2014 Page 1 of 10 Vectors AAV (Adeno-associated) Viral Vectors For Neuroscience Applications Expression Vectors- by gene GENIE: Calcium Sensor: GCaMP6 AV-1-PV2822 AAV1.Syn.GCaMP6f.WPRE.SV40 AV-1-PV2824 AAV1.Syn.GCaMP6s.WPRE.SV40

More information

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING Marc Verhaegen CMCS, MONTREAL, MAY 11 th, 2017 OVERVIEW Hyperspectral Imaging Multiplex Biological Imaging Multiplex Single Particle

More information

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky FLUORESCENCE Matyas Molnar and Dirk Pacholsky 1 Information This lecture contains images and information from the following internet homepages http://micro.magnet.fsu.edu/primer/index.html http://www.microscopyu.com/

More information

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength.

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength. Contact Details The electromagnetic spectrum Biological Spectroscopy Dr Alexander Galkin Email: a.galkin@qub.ac.uk Dr Alexander Galkin MSc Biomolecular Function - BBC8045 Office: MBC Room 186 Tel: (028)

More information

Genetically targeted all-optical electrophysiology with a transgenic Credependent

Genetically targeted all-optical electrophysiology with a transgenic Credependent Genetically targeted all-optical electrophysiology with a transgenic Credependent Optopatch mouse Short title: Transgenic Optopatch mouse Shan Lou 1, Yoav Adam 1, Eli N. Weinstein 1,4, Erika Williams 2,

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Dino-Lite knowledge & education. Fluorescence Microscopes

Dino-Lite knowledge & education. Fluorescence Microscopes Dino-Lite knowledge & education Fluorescence Microscopes Dino-Lite Fluorescence models Smallest fluorescence microscope in the world Revolution to biomedical and educational applications Flexible Easy

More information

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Joanna Mattis,,7, Kay M Tye,7, Emily A Ferenczi,,7, Charu Ramakrishnan, Daniel J O Shea,, Rohit Prakash,,

More information

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins Joanna Mattis,,7, Kay M Tye,7, Emily A Ferenczi,,7, Charu Ramakrishnan, Daniel J O Shea,, Rohit Prakash,,

More information

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy Fluorescence Microscopy Louisiana Tech University Ruston, Louisiana Microscopy Workshop Dr. Mark DeCoster Associate Professor Biomedical Engineering 1 Terms and concepts to know: Signal to Noise Excitation

More information

A simple introduction to multiphoton microscopy

A simple introduction to multiphoton microscopy Journal of Microscopy, Vol. 243, Pt 3 2011, pp. 221 226 Received 29 April 2011; accepted 28 June 2011 doi: 10.1111/j.1365-2818.2011.03532.x A simple introduction to multiphoton microscopy A. USTIONE &

More information

Live cell microscopy

Live cell microscopy Live cell microscopy 1. Why do live cell microscopy? 2. Maintaining living cells on a microscope stage. 3. Considerations for imaging living cells. 4. Fluorescence labeling of living cells. 5. Imaging

More information

SUMMER SCHOOL LABORATORY ACTIVITIES

SUMMER SCHOOL LABORATORY ACTIVITIES SUMMER SCHOOL LABORATORY ACTIVITIES ACTIVITIES Monday Tuesday Wednesday Thursday 18 th 19 th 20 th 21 st 1 and 2 A B C D 3 and 4 B C D A 5 and 6 C D A B 7 and 8 D A B C The students are divided into 4

More information

SUMMER SCHOOL LABORATORY ACTIVITIES

SUMMER SCHOOL LABORATORY ACTIVITIES SUMMER SCHOOL LABORATORY ACTIVITIES ACTIVITIES Monday Tuesday Wednesday Thursday 18 th 19 th 20 th 21 st 1 and 2 A B C D 3 and 4 B C D A 5 and 6 C D A B 7 and 8 D A B C The students are divided into 4

More information

SURFACE ENHANCED RAMAN SCATTERING NANOPARTICLES AS AN ALTERNATIVE TO FLUORESCENT PROBES AN EVALUATION

SURFACE ENHANCED RAMAN SCATTERING NANOPARTICLES AS AN ALTERNATIVE TO FLUORESCENT PROBES AN EVALUATION APPLICATION NOTE SURFACE ENHANCED RAMAN SCATTERING NANOPARTICLES AS AN ALTERNATIVE TO FLUORESCENT PROBES AN EVALUATION Summary: Interest in using nanoparticles specifically, Surface Enhanced Raman Scattering

More information

Study Guide Imaging Physics and Biophysics for the Master-Study Programmes

Study Guide Imaging Physics and Biophysics for the Master-Study Programmes Study Guide Imaging Physics and Biophysics for the Master-Study Programmes Imaging Physics is one of the main areas of research of the Faculty for Physics and Astronomy at the Julius-Maximilians-University

More information

UNDERSTANDING GENE REPLACEMENT THERAPY FOR GENETIC DISEASES

UNDERSTANDING GENE REPLACEMENT THERAPY FOR GENETIC DISEASES UNDERSTANDING GENE REPLACEMENT THERAPY FOR GENETIC DISEASES What is a genetic disease? A genetic disease is caused by a nonworking or missing gene or genes. A genetic disease can be passed down from one

More information

Honours and PostDoctorate Research Projects. Lions Eye Institute, Perth

Honours and PostDoctorate Research Projects. Lions Eye Institute, Perth Honours and PostDoctorate Research Projects Available from 1 st Semester, 2018 Lions Eye Institute, Perth 1 About the Lions Eye Institute. The Lions Eye Institute is a not-for-profit centre of excellence

More information

Detecting Gene Expression In-Vivo Using Differential Laser. Absorption. Senior Thesis - Physics, May By Hermonta M Godwin

Detecting Gene Expression In-Vivo Using Differential Laser. Absorption. Senior Thesis - Physics, May By Hermonta M Godwin Detecting Gene Expression In-Vivo Using Differential Laser Absorption Senior Thesis - Physics, May 2002 By Hermonta M Godwin Advisor: Professor William E. Cooke College of William and Mary Abstract: The

More information

Application of Quantum Mechanics to Biology

Application of Quantum Mechanics to Biology Application of Quantum Mechanics to Biology How can we apply quantum mechanics to biology? Polymers of nucleotides and amino acids - millions of atoms bounded into a large molecule Visual System Must turn

More information

Issues in production of viral gene transfer vectors. Stefan Kochanek Department of Gene Therapy Ulm University

Issues in production of viral gene transfer vectors. Stefan Kochanek Department of Gene Therapy Ulm University Issues in production of viral gene transfer vectors Stefan Kochanek Department of Gene Therapy Ulm University Only few positive results in gene therapy so far - many early phase, few late phase clinical

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Experts in Femtosecond Laser Technology. DermaInspect. Non-invasive multiphoton tomography of human skin

Experts in Femtosecond Laser Technology. DermaInspect. Non-invasive multiphoton tomography of human skin Experts in Femtosecond Laser Technology DermaInspect Non-invasive multiphoton tomography of human skin In vivo optical biopsies with subcellular spatial resolution based on near infrared femtosecond laser

More information

BASICS OF FLOW CYTOMETRY

BASICS OF FLOW CYTOMETRY BASICS OF FLOW CYTOMETRY AUTHOR: Ana Isabel Vieira APPROVAL: Henrique Veiga Fernandes Ana Sílvia Gonçalves SOP.UCF.002 03-09-2015 Pag. 1/9 Overview Flow: Fluid Cyto: Cell Metry: Measurement Flow cytometry

More information

Lasers for Microscopy: Major Trends

Lasers for Microscopy: Major Trends Lasers for Microscopy: Major Trends Marco Arrigoni, Nigel Gallaher, Darryl McCoy, Volker Pfeufer and Matthias Schulze, Coherent Inc. Laser development for the microscopy market continues to be driven by

More information

In spite of its long history, optical

In spite of its long history, optical Major Trends Laser development for the microscopy market continues to be driven by key trends in applications, which currently include superresolution techniques, multiphoton applications in optogenetics

More information

ALP (alkaline phosphatase) calibrators were analyzed manually in microtiter plates to find the linearity range by following this protocol:

ALP (alkaline phosphatase) calibrators were analyzed manually in microtiter plates to find the linearity range by following this protocol: Exam Mol 3008 May 2009 Subject 1 (15p) ALP (alkaline phosphatase) calibrators were analyzed manually in microtiter plates to find the linearity range by following this protocol: Reaction solutions: 50

More information

Shining the light into the brain

Shining the light into the brain Shining the light into the brain To cite this version:. Shining the light into the brain. Master. France. 2011. HAL Id: sfo-00658672 https://hal-sfo.ccsd.cnrs.fr/sfo-00658672 Submitted on

More information

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging QImaging Camera Application Notes Multicolor Immunofluorescence Imaging In order to image localization of intracellular proteins with high specificity, it is frequently necessary to multiplex antibody

More information

Adeno-Associated Virus titer and aggregation characterization

Adeno-Associated Virus titer and aggregation characterization Adeno-Associated Virus titer and aggregation characterization Characterization of gold-labeled Adeno-Associated Virus (AAV) and other small viruses by Nanoparticle Tracking Analysis (NTA) PARTICLE CONCENTRATION

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

Sample region with fluorescent labeled molecules

Sample region with fluorescent labeled molecules FLUORESCENCE IMAGING I. Fluorescence-imaging with diffraction limited spots The resolution in optical microscopy has been hampered by the smallest spot possible (~ λ/2) that can be achieved by conventional

More information

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Sabrina Campelo, Dr. Andrew Harken Outline Motivation Fluorescence Microscopy -Multiphoton Imaging

More information

Localization Microscopy

Localization Microscopy Localization Microscopy Theory, Sample Prep & Practical Considerations Patrina Pellett & Ann McEvoy Applications Scientist GE Healthcare, Cell Technologies May 27 th, 2015 Localization Microscopy Talk

More information

CRN 18-mo progress update

CRN 18-mo progress update CRN 18-mo progress update Gene transfer studies for cystinosis Principal investigator: Vasiliki Kalatzis, Ph.D. Co-investigator: Eric J. Kremer, Ph.D. Affiliation: Institut Génétique Moléculaire de Montpellier

More information

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1 Biophotonics Light Matter Interactions & Lasers NPTEL Biophotonics 1 Overview In this lecture you will learn, Light matter interactions: absorption, emission, stimulated emission Lasers and some laser

More information

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V Cellular imaging using Nano- Materials A Case-Study based approach Arun Murali, Srivats V Agenda Discuss a few papers Explain a couple of new imaging techniques and their benefits over conventional imaging

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Materials and Methods Circular dichroism (CD) spectroscopy. Far ultraviolet (UV) CD spectra of apo- and holo- CaM and the CaM mutants were recorded on a Jasco J-715 spectropolarimeter

More information

Total Internal Reflection Fluorescence Microscopy

Total Internal Reflection Fluorescence Microscopy Total Internal Reflection Microscopy Nicole O Neil Indiana University October 24, 2005 Agenda Why use TIRFM? Theory behind TIR Snell s Law Instrumentation Evanescent Wave Excitation of Fluorophores Advantages/Disadvantages

More information

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Introduction In this application note, we will discuss the application of quantum dots in fluorescence imaging, both

More information

Challenges to measuring intracellular Ca 2+ Calmodulin: nature s Ca 2+ sensor

Challenges to measuring intracellular Ca 2+ Calmodulin: nature s Ca 2+ sensor Calcium Signals in Biological Systems Lecture 3 (2/9/0) Measuring intracellular Ca 2+ signals II: Genetically encoded Ca 2+ sensors Henry M. Colecraft, Ph.D. Challenges to measuring intracellular Ca 2+

More information

Concept review: Fluorescence

Concept review: Fluorescence 16 Concept review: Fluorescence Some definitions: Chromophore. The structural feature of a molecule responsible for the absorption of UV or visible light. Fluorophore. A chromophore that remits an absorbed

More information

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM Bi177 - Lecture 13 Microscopy Outside the Box Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM The diffraction limit: Abbe s law The Problem Diffraction limit 100x larger than molecular scale! Green Fluorescent

More information

Basic principles of quantification using optical techniques

Basic principles of quantification using optical techniques Contents Basic principles of quantification using optical techniques Adrian Taruttis Helmholtz Zentrum München Chair for Biological Imaging Technische Universität München Light/ tissue interactions Planar

More information

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Institute of Industrial Information Technology Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Optical Characterization of Materials, March 19, 2015 Sebastian Bauer, M.Sc. (Head:

More information

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000 Confocal Microscopy of Electronic Devices James Saczuk Consumer Optical Electronics EE594 02/22/2000 Introduction! Review of confocal principles! Why is CM used to examine electronics?! Several methods

More information

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals: Only for teaching purposes - not for reproduction or sale CELL TRANSFECTION transient stable TRANSGENIC ANIMALS - Two methods to produce transgenic animals: 1- DNA microinjection 2- embryonic stem cell-mediated

More information

Symposium 20 years of nano-optics April 6th, 2004 Auditorium, Institute of Physics, St.Johanns-Ring 25

Symposium 20 years of nano-optics April 6th, 2004 Auditorium, Institute of Physics, St.Johanns-Ring 25 Symposium 20 years of nano-optics April 6th, 2004 Auditorium, Institute of Physics, St.Johanns-Ring 25 9:30 9:45 Coffee and Gipfeli 9:45 10:00 Welcome address and introduction B. Hecht Uni Basel H.-J.

More information

High Throughput Whole Organ Imaging Based on Multifocal Multiphoton Microscope

High Throughput Whole Organ Imaging Based on Multifocal Multiphoton Microscope High Throughput Whole Organ Imaging Based on Multifocal Multiphoton Microscope LBRC researchers: Peter So, Jae Won Cha, Elijah Yew, Vijay Singh External technology collaborators: Prof. Hanry Yu (University

More information

Confocal Microscopy Analyzes Cells

Confocal Microscopy Analyzes Cells Choosing Filters for Fluorescence A Laurin Publication Photonic Solutions for Biotechnology and Medicine November 2002 Confocal Microscopy Analyzes Cells Reprinted from the November 2002 issue of Biophotonics

More information

CELL BIOLOGY - CLUTCH CH TECHNIQUES IN CELL BIOLOGY.

CELL BIOLOGY - CLUTCH CH TECHNIQUES IN CELL BIOLOGY. !! www.clutchprep.com CONCEPT: LIGHT MICROSCOPE A light microscope uses light waves and magnification to view specimens Can be used to visualize transparent, and some cellular components - Can visualize

More information

Research area in the Strategic Objective Development of optical control technologies and elucidation of biological mechanisms

Research area in the Strategic Objective Development of optical control technologies and elucidation of biological mechanisms Research area in the Strategic Objective Development of optical control technologies and elucidation of biological mechanisms 6.1.5 Development and application of optical technology for spatiotemporal

More information

Femtosecond micromachining in polymers

Femtosecond micromachining in polymers Femtosecond micromachining in polymers Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur fs-micromachining focus laser beam inside

More information

Fluorescence Light Microscopy for Cell Biology

Fluorescence Light Microscopy for Cell Biology Fluorescence Light Microscopy for Cell Biology Why use light microscopy? Traditional questions that light microscopy has addressed: Structure within a cell Locations of specific molecules within a cell

More information

Page 1 of 9 Fundamentals and Applications in Multiphoton Excitation Microscopy Two-photon excitation microscopy (also referred to as non-linear, multiphoton, or two-photon laser scanning microscopy) is

More information

IACUC and IBC PROCESS

IACUC and IBC PROCESS IACUC and IBC PROCESS Office of Research Services Resource Center Building Room 206 504-568-4970 Kenneth Kratz, PhD Director, Chairman of IRB and IACUC Staff: Nicole Hammill Pre-award Grants and Contracts

More information

More on fluorescence

More on fluorescence More on fluorescence Last class Fluorescence Absorption emission Jablonski diagrams This class More on fluorescence Common fluorophores Jablonski diagrams to spectra Properties of fluorophores Excitation

More information

Quality Control Assays

Quality Control Assays QUALITY CONTROL An integral part of the Penn Vector Core is its robust quality control program which is carried out by a separate quality control group. Quality control assays have been developed and optimized

More information

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life Super Resolution Microscopy STORM/PALM Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 1/31/211 Looking into microscopic world of life 1 µm 1 µm 1 nm 1 nm 1 nm 1 Å Naked

More information

Biosensors. DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses)

Biosensors. DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses) Biosensors DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses) DNA Microarrays 40 000 detectors in parallel, each detecting a specific DNA sequence. Combinatorial Chemistry

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information

Controlling life with photons A new tool based on conjugated polymers

Controlling life with photons A new tool based on conjugated polymers Controlling life with photons A new tool based on conjugated polymers Maria Rosa Antognazza Center for Nanoscience and Technology @PoliMi The Italian Institute of Technology Controlling life with photons:

More information

FLIM Fluorescence Lifetime IMaging

FLIM Fluorescence Lifetime IMaging FLIM Fluorescence Lifetime IMaging Fluorescence lifetime t I(t) = F0 exp( ) τ 1 τ = k f + k nr k nr = k IC + k ISC + k bl Batiaens et al, Trends in Cell Biology, 1999 τ τ = fluorescence lifetime (~ns to

More information

Photoacoustic imaging of vascular networks in transgenic mice

Photoacoustic imaging of vascular networks in transgenic mice Photoacoustic imaging of vascular networks in transgenic mice J.G. Laufer 1, J.O. Cleary 1,2, E.Z. Zhang 1, M.F. Lythgoe 2, P.C. Beard 1 1. Department of Medical Physics and Bioengineering, University

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) ADVANTAGES Optical Imaging OI Optical Imaging is based on the detection of weak light by a highly sensitive and high resolution CCD camera DISADVANTAGES High sensitivity Limited penetration depth Easy

More information

F* techniques: FRAP, FLIP, FRET, FLIM,

F* techniques: FRAP, FLIP, FRET, FLIM, F* techniques: FRAP, FLIP, FRET, FLIM, FCS Antonia Göhler March 2015 Fluorescence explained in the Bohr model Absorption of light (blue) causes an electron to move to a higher energy orbit. After a particular

More information

Biomedical Applications of Molecular Spectroscopy

Biomedical Applications of Molecular Spectroscopy Biomedical Applications of Molecular Spectroscopy Mike Kayat B&W Tek, Inc 19 Shea Way Newark, DE 19713 United States of America +1 302 368 7824 mikek@bwtek.com 1 Overview Molecular spectroscopy is a large

More information

Multiphoton Microscopy: Seeing deeper and clearer

Multiphoton Microscopy: Seeing deeper and clearer Multiphoton Microscopy: Seeing deeper and clearer Since the invention of simple microscope by Leuwenhoek and Hooke in the 17th century, different types of light microscopy techniques (such as phase contrast,

More information

Gold nanorods as multifunctional probes. in liquid crystalline DNA matrix

Gold nanorods as multifunctional probes. in liquid crystalline DNA matrix Supporting Information Gold nanorods as multifunctional probes in liquid crystalline DNA matrix Joanna Olesiak-Banska, Marta Gordel, Katarzyna Matczyszyn, Vasyl Shynkar, Joseph Zyss, Marek Samoc Extinction

More information

Two-photon microscopy in plant research

Two-photon microscopy in plant research Femto2D MULTIPHOTON LASER SCANNING MICROSCOPE Two-photon microscopy in plant research Femtonics Kft. Tűzoltó u. 59. H-1094 Budapest Hungary www.femtonics.eu info@femtonics.eu +36-1-2103349 Advantages of

More information

CS262 Lecture 12 Notes Single Cell Sequencing Jan. 11, 2016

CS262 Lecture 12 Notes Single Cell Sequencing Jan. 11, 2016 CS262 Lecture 12 Notes Single Cell Sequencing Jan. 11, 2016 Background A typical human cell consists of ~6 billion base pairs of DNA and ~600 million bases of mrna. It is time-consuming and expensive to

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

A Survey of Laser Types. Gas Lasers

A Survey of Laser Types. Gas Lasers Mihail Pivtoraiko Andrei Rozhkov Applied Optics Winter 2003 A Survey of Laser Types Laser technology is available to us since 1960 s, and since then has been quite well developed. Currently, there is a

More information

Design for Manufacturability (DFM) in the Life Sciences

Design for Manufacturability (DFM) in the Life Sciences T E C H N I C A L N O T E Design for Manufacturability (DFM) in the Life Sciences Fluorescence Spectroscopy Product Platform Realized with TracePro TM Suite of Opto-Mechanical Design Software Tools Authors:

More information

Confocal Microscopy & Imaging Technology. Yan Wu

Confocal Microscopy & Imaging Technology. Yan Wu Confocal Microscopy & Imaging Technology Yan Wu Dec. 05, 2014 Cells under the microscope What we use to see the details of the cell? Light and Electron Microscopy - Bright light / fluorescence microscopy

More information

DNA Microarray Technology

DNA Microarray Technology 2 DNA Microarray Technology 2.1 Overview DNA microarrays are assays for quantifying the types and amounts of mrna transcripts present in a collection of cells. The number of mrna molecules derived from

More information

Lab 5: Optical trapping and single molecule fluorescence

Lab 5: Optical trapping and single molecule fluorescence Lab 5: Optical trapping and single molecule fluorescence PI: Matt Lang Lab Instructor: Jorge Ferrer Summary Optical tweezers are an excellent experimental tool to study the biophysics of single molecule

More information

Generation and Application of Genetically Modified Mouse Models of Human Disease.

Generation and Application of Genetically Modified Mouse Models of Human Disease. Generation and Application of Genetically Modified Mouse Models of Human Disease. Nina Balthasar RCUK and BHF Research Fellow Department of Physiology and Pharmacology University of Bristol The Plan Techniques

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random insertion 2- embryonic stem cell-mediated gene

More information

Introduction of Biosensors

Introduction of Biosensors Introduction of Biosensors Lecture April 17 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) What s is a biosensor? Target 4.22 Signal Signal Analtye

More information

Confocal Microscopes. Evolution of Imaging

Confocal Microscopes. Evolution of Imaging Confocal Microscopes and Evolution of Imaging Judi Reilly Hans Richter Massachusetts Institute of Technology Environment, Health & Safety Office Radiation Protection What is Confocal? Pinhole diaphragm

More information

Imaging the immune system with a Two photon (2P) microscope

Imaging the immune system with a Two photon (2P) microscope Imaging the immune system with a Two photon (2P) microscope QuickTime et un décompresseur Cinepak sont requis pour visionner cette image. Main advantages of 2P microscopy : 1/ Deep penetration into tissue

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information