geothermal energy 1 of 8

Size: px
Start display at page:

Download "geothermal energy 1 of 8"

Transcription

1 Encyclopedic Entry For Educator energy For the complete encyclopedic entry with media resources, visit: Geothermal energy is heat that is generated within the Earth. (Geo means earth, and thermal means heat in Greek.) It is a renewable resource that can be harvested for human use. About 2,900 kilometers (1,800 miles) below the Earth s crust, or surface, is the hottest part of our planet: the core. A small portion of the core s heat comes from the friction and gravitational pull formed when Earth was created more than 4 billion years ago. However, the vast majority of Earth s heat is constantly generated by the decay of radioactive isotopes, such as potassium-40 and thorium-232. Isotopes are forms of an element that have a different number of neutrons than regular versions of the element s atom. Potassium, for instance, has 20 neutrons in its nucleus. Potassium-40, however, has 21 neutrons. As potassium-40 decays, its nucleus changes, emitting enormous amounts of energy (radiation). Potassium-40 most often decays to isotopes of calcium (calcium-40) and argon (argon-40). Radioactive decay is a continual process in the core. Temperatures there rise to more than 5,000 Celsius (about 9,000 Fahrenheit). Heat from the core is constantly radiating outward and warming rocks, water, gas, and other geological material. Earth s temperature rises with depth from the surface to the core. This gradual change in temperature is known as the gradient. In most parts of the world, the gradient is about 25 C per 1 kilometer of depth (1 F per 77 feet of depth). If underground rock formations are heated to about 700-1,300 C (1,300-2,400 F), they can become magma. Magma is molten (partly melted) rock permeated by gas and gas bubbles. Magma exists in the mantle and lower crust, and sometimes bubbles to the surface as lava. Magma heats nearby rocks and underground aquifers. Hot water can be released through geysers, hot springs, steam vents, underwater hydrothermal vents, and mud pots. These are all sources of energy. Their heat can be captured and used directly for heat, or their steam can be used to generate electricity. Geothermal energy can be used to heat structures such as buildings, parking lots, and sidewalks. Most of the Earth s energy does not bubble out as magma, water, or steam. It remains in the mantle, emanating outward at a slow pace and collecting as pockets of high heat. This dry heat can be accessed by drilling, and enhanced with injected water to create steam. Many countries have developed methods of tapping into energy. Different types of energy are available in different parts of the world. In Iceland, abundant sources of hot, easily accessible underground 1 of 8

2 water make it possible for most people to rely on sources as a safe, dependable, and inexpensive source of energy. Other countries, such as the U.S., must drill for energy at greater cost. Harvesting Geothermal Energy: Heating and Cooling Low-Temperature Geothermal Energy Almost anywhere in the world, heat can be accessed and used immediately as a source of heat. This heat energy is called low-temperature energy. Low-temperature energy is obtained from pockets of heat about 150 C (302 F). Most pockets of low-temperature energy are found just a few meters below ground. Low-temperature energy can be used for heating greenhouses, homes, fisheries, and industrial processes. Low-temperature energy is most efficient when used for heating, although it can sometimes be used to generate electricity. People have long used this type of energy for engineering, comfort, healing, and cooking. Archaeological evidence shows that 10,000 years ago, groups of Native Americans gathered around naturally occurring hot springs to recuperate or take refuge from conflict. In the third century BCE, scholars and leaders warmed themselves in a hot spring fed by a stone pool near Lishan, a mountain in central China. One of the most famous hot spring spas is in the appropriately named town of Bath, England. Starting construction in about 60 CE, Roman conquerors built an elaborate system of steam rooms and pools using heat from the region s shallow pockets of low-temperature energy. The hot springs of Chaudes Aigues, France, have provided a source of income and energy for the town since the 1300s. Tourists flock to the town for its elite spas. The low-temperature energy also supplies heat to homes and businesses. The United States opened its first district heating system in 1892 in Boise, Idaho. This system still provides heat to about 450 homes. Co-Produced Geothermal Energy Co-produced energy technology relies on other energy sources. This form of energy uses water that has been heated as a byproduct in oil and gas wells. In the United States, about 25 billion barrels of hot water are produced every year as a byproduct. In the past, this hot water was simply discarded. Recently, it has been recognized as a potential source of even more energy: Its steam can be used to generate electricity to be used immediately or sold to the grid. One of the first co-produced energy projects was initiated at the Rocky Mountain Oilfield Testing Center in the U.S. state of Wyoming. The facility continues to produce about 200 kilowatts of power using fluids discarded from nearby petroleum and natural gas wells. Newer technology has allowed co-produced energy facilities to be portable. Although still in experimental stages, mobile power plants hold tremendous potential for isolated or impoverished communities. Geothermal Heat Pumps Geothermal heat pumps (GHPs) take advantage of the Earth s heat, and can be used almost anywhere in the world. GHPs are drilled about 3 to 90 meters (10 to 300 feet) deep, much shallower than most oil and natural gas wells. GHPs do not require fracturing bedrock to reach their energy source. A pipe connected to a GHP is arranged in a continuous loop called a "slinky loop" that circles underground and above ground, usually throughout a building. The loop can also be contained entirely underground, to heat a 2 of 8

3 parking lot or landscaped area. In this system, water or other liquids (such as glycerol, similar to a car s antifreeze) move through the pipe. During the cold season, the liquid absorbs underground heat. It carries the heat upward through the building and gives off warmth through a duct system. These heated pipes can also run through hot water tanks and offset water-heating costs. During the summer, the GHP system works the opposite way: The liquid in the pipes is warmed from the heat in the building or parking lot, and carries the heat to be cooled underground. The U.S. Environmental Protection Agency has called heating the most energy-efficient and environmentally safe heating and cooling system. The largest GHP system was completed in 2012 at Ball State University in Indiana. The system replaced a coal-fired boiler system, and experts estimate the university will save about $2 million a year in heating costs. Harvesting Geothermal Energy: Electricity In order to obtain enough energy to generate electricity, power plants rely on heat that exists a few kilometers below the surface of the Earth. In some areas, the heat can naturally exist underground as pockets steam or hot water. However, most areas need to be enhanced with injected water to create steam. Dry-Steam Power Plants Dry-steam power plants take advantage of natural underground sources of steam. The steam is piped directly to a power plant, where it is used to fuel turbines and generate electricity. Dry steam is the oldest type of power plant to generate electricity using energy. The first dry-steam power plant was constructed in Larderello, Italy, in Today, the dry-steam power plants at Larderello continue to supply electricity to more than a million residents of the area. There are only two known sources of underground steam in the United States: Yellowstone National Park in Wyoming and The Geysers in California. Since Yellowstone is a protected area, The Geysers is the only place where a dry-steam power plant is in use. It is one of the largest energy complexes in the world, and provides about a fifth of all renewable energy in California. Flash-Steam Power Plant Flash-steam power plants use naturally occurring sources of underground hot water and steam. Water that is hotter than 182 C (360 F) is pumped into a low-pressure area. Some of the water flashes, or evaporates rapidly into steam, and is funneled out to power a turbine and generate electricity. Any remaining water can be flashed in a separate tank to extract more energy. Flash-steam power plants are the most common type of power plants. The volcanically active island nation of Iceland supplies nearly all its electrical needs through a series of flash-steam power plants. The steam and excess warm water produced by the flash-steam process heat icy sidewalks and parking lots in the frigid Arctic winter. The islands of the Philippines also sit over a tectonically active area, the "Ring of Fire" that rims the Pacific Ocean. Government and industry in the Philippines have invested in flash-steam power plants, and today the nation is second only to the United States in its use of energy. In fact, the largest single power plant is a flash-steam facility in Malitbog, Philippines. Binary Cycle Power Plants Binary cycle power plants use a unique process to conserve water and generate heat. Water is heated 3 of 8

4 underground to about C ( F). The hot water is contained in a pipe, which cycles above ground. The hot water heats a liquid organic compound that has a lower boiling point than water. The organic liquid creates steam, which flows through a turbine and powers a generator to create electricity. The only emission in this process is steam. The water in the pipe is recycled back to the ground, to be re-heated by the Earth and provide heat for the organic compound again. The Beowawe Geothermal Facility in the U.S. state of Nevada uses the binary cycle to generate electricity. The organic compound used at the facility is an industrial refrigerant (tetrafluoroethane, a greenhouse gas). This refrigerant has a much lower boiling point than water, meaning it is converted into gas at low temperatures. The gas fuels the turbines, which are connected to electrical generators. Enhanced Geothermal Systems The Earth has virtually endless amounts of energy and heat beneath its surface. However, it is not possible to use it as energy unless the underground areas are "hydrothermal." This means the underground areas are not only hot, but also contain liquid and are permeable. Many areas do not have all three of these components. An enhanced system (EGS) uses drilling, fracturing, and injection to provide fluid and permeability in areas that have hot but dry underground rock. To develop an EGS, an injection well is drilled vertically into the ground. Depending on the type of rock, this can be as shallow as 1 kilometer (0.6 mile) to as deep as 4.5 kilometers (2.8 miles). High-pressure cold water is injected into the drilled space, which forces the rock to create new fractures, expand existing fractures, or dissolve. This creates a reservoir of underground fluid. Water is pumped through the injection well and absorbs the rocks heat as it flows through the reservoir. This hot water, called brine, is then piped back up to Earth s surface through a production well. The heated brine is contained in a pipe. It warms a secondary fluid that has a low boiling point, which evaporates to steam and powers a turbine. The brine cools off, and cycles back down through the injection well to absorb underground heat again. There are no gaseous emissions besides the water vapor from the evaporated liquid. Pumping water into the ground for EGSs can cause seismic activity, or small earthquakes. In Basel, Switzerland, the injection process caused hundreds of tiny earthquakes that grew to more significant seismic activity even after the water injection was halted. This led to the project being canceled in Geothermal Energy and the Environment Geothermal energy is a renewable resource. The Earth has been emitting heat for about 4.5 billion years, and will continue to emit heat for billions of years into the future because of the ongoing radioactive decay in the Earth s core. However, most wells that extract the heat will eventually cool, especially if heat is extracted more quickly than it is given time to replenish. Larderello, Italy, site of the world s first electrical plant supplied by energy, has seen its steam pressure fall by more than 25% since the 1950s. Re-injecting water can sometimes help a cooling site last longer. However, this process can cause micro-earthquakes. Although most of these are too small to be felt by people or register on a scale of magnitude, sometimes the ground can quake at more threatening levels and cause the project to shut down, as it did in Basel, Switzerland. Geothermal systems do not require enormous amounts of freshwater. In binary systems, water is only used as a heating agent, and is not exposed or evaporated. It can be recycled, used for other purposes, or released into the atmosphere as non-toxic steam. However, if the fluid is not contained and recycled in a pipe, it can absorb harmful substances such as arsenic, boron, and fluoride. These toxic substances can be carried to the 4 of 8

5 surface and released when the water evaporates. In addition, if the fluid leaks to other underground water systems, it can contaminate clean sources of drinking water and aquatic habitats. Advantages There are many advantages to using energy either directly or indirectly: Geothermal energy is renewable; it is not a fossil fuel that will be eventually used up. The Earth is continuously radiating heat out from its core, and will continue to do so for billions of years. Some form of energy can be accessed and harvested anywhere in the world. Using energy is relatively clean. Most systems only emit water vapor, although some emit very small amounts of sulfur dioxide, nitrous oxides, and particulates. Geothermal power plants can last for decades and possibly centuries. If a reservoir is managed properly, the amount of extracted energy can be balanced with the rock s rate of renewing its heat. Unlike other renewable energy sources, systems are baseload. This means they can work in the summer or winter, and are not dependent on changing factors such as the presence of wind or sun. Geothermal power plants produce electricity or heat 24 hours a day, 7 days a week. The space it takes to build a facility is much more compact than other power plants. To produce a GWh (a gigawatt hour, or one million kilowatts of energy for one hour, an enormous amount of energy), a plant uses the equivalent of about 1,046 square kilometers (404 square miles) of land. To produce the same GWh, wind energy requires 3,458 square kilometers (1,335 square miles), a solar photovoltaic center requires 8,384 square kilometers (3,237 square miles), and coal plants use about 9,433 square kilometers (3,642 square miles). Geothermal energy systems are adaptable to many different conditions. They can be used to heat, cool, or power individual homes, whole districts, or industrial processes. Disadvantages Harvesting energy still poses many challenges: The process of injecting high-pressure streams of water into the Earth can result in minor seismic activity, or small earthquakes. Geothermal plants have been linked to subsidence, or the slow sinking of land. This happens as the underground fractures collapse upon themselves. In some areas of New Zealand, the ground under a power plant subsides at a rate of almost a half a meter (1.6 feet) every year. This can lead to damaged pipelines, roadways, buildings, and natural drainage systems. Geothermal plants can release small amounts of greenhouse gases such as hydrogen sulfide and carbon dioxide. Water that flows through underground reservoirs can pick up trace amounts of toxic elements such as arsenic, mercury, and selenium. These harmful substances can be leaked to water sources if the system is not properly insulated. Although the process requires almost no fuel to run, the initial cost of installing technology is expensive. Developing countries may not have the sophisticated infrastructure or start-up costs to invest in a power plant. Several facilities in the Philippines, for example, were made possible by investments from American industry and government agencies. Today, the plants are Philippine-owned and operated. Geothermal Energy and People Geothermal energy exists in different forms all over the Earth (by steam vents, lava, geysers, or simply dry heat), and there are different possibilities for extracting and using this heat. In New Zealand, natural geysers and steam vents heat swimming pools, homes, greenhouses, and prawn farms. New Zealanders also use dry heat to dry timber and feedstock. Other countries, such as Iceland, have taken advantage of molten rock and magma resources from volcanic 5 of 8

6 activity to provide heat for homes and buildings. In Iceland, almost 90% of the country s people use heating resources. Iceland also relies on its natural geysers to melt snow, warm fisheries, and heat greenhouses. The United States generates the most amount of energy of any other country. Every year, the U.S. generates about 15 billion kilowatt-hours, or the equivalent of burning about 25 million barrels of oil. Industrial technologies have been concentrated in the western U.S. In 2012, Nevada had 59 projects either operational or in development, followed by California with 31 projects, and Oregon with 16 projects. The cost of energy technology has gone down in the last decade, and is becoming more economically possible for individuals and companies. VOCABULARY Term Part of Speech Definition antifreeze liquid used to lower the freezing point of a cooling substance. aquifer an underground layer of rock or earth which holds groundwater. baseload adjective type of power plant that runs at near-full capacity 24 hours a day, every day. bedrock solid rock beneath the Earth's soil and sand. binary cycle power plant power plant that uses heated underground water to warm a fluid with a lower boiling point than water, which creates a steam that powers turbines and electrical generators. brine water or other fluid pumped through an enhanced system (EGS). byproduct substance that is created by the production of another material. coal dark, solid fossil fuel mined from the earth. compact verb to pack tightly together. co-produced energy heat obtained from the steam and hot water produced as a byproduct of petroleum and natural gas wells. core the extremely hot center of Earth, another planet, or a star. dry-steam power plant power plant that uses natural pockets of steam to drive turbines and electrical generators. earthquake the sudden shaking of Earth's crust caused by the release of energy along fault lines or from volcanic activity. electricity set of physical phenomena associated with the presence and flow of electric charge. element chemical that cannot be separated into simpler substances. emission discharge or release. engineering the art and science of building, maintaining, moving, and demolishing structures. enhanced system (EGS) power plant where water or another fluid is injected into bedrock, sometimes causing fracturing and creating reservoirs of heat. evaporate verb to change from a liquid to a gas or vapor. 6 of 8

7 flash-steam power plant power plant where fluid at temperatures greater than 182 degrees Celsius (360 degrees Fahrenheit) is pumped under high pressure into a tank held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor drives a turbine, which drives an electrical generator. friction force produced by rubbing one thing against another. frigid adjective very cold. energy heat energy generated within the Earth. gradient heat pump (GHP) gradual change in temperature from the Earth's core (hot) to its crust (cool), about 25 degrees Celsus per kilometer of depth/1 degree Fahrenheit per 70 feet of depth. heating or cooling system that pipes water in a continuous loop from wells drilled into the Earth through the space being heated or cooled, and back again. geyser natural hot spring that sometimes erupts with water or steam. gravitational pull greenhouse gas the physical attraction between two objects. gas in the atmosphere, such as carbon dioxide and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere. habitat environment where an organism lives throughout the year or for shorter periods of time. hot spring small flow of water flowing naturally from an underground water source heated by hot or molten rock. hydrothermal adjective related to hot water, especially water heated by the Earth's internal temperature. impoverished adjective very poor. income wages, salary, or amount of money earned. infrastructure structures and facilities necessary for the functioning of a society, such as roads. isolate verb to set one thing or organism apart from others. isotope atom with an unbalanced number of neutrons in its nucleus, giving it a different atomic weight than other atoms of the same element. lava molten rock, or magma, that erupts from volcanoes or fissures in the Earth's surface. lowtemperature energy heat obtained from underground fluids (usually water) of 150 degrees Celsius (300 degrees Fahrenheit) or less. magma molten, or partially melted, rock beneath the Earth's surface. mantle middle layer of the Earth, made of mostly solid rock. mud pot natural spring filled with hot, bubbling mud. Native American person whose ancestors were native inhabitants of North or South America. Native American usually does not include Eskimo or Hawaiian people. natural gas type of fossil fuel made up mostly of the gas methane. 7 of 8

8 neutron particle in an atom having no electrical charge. permeable adjective allowing liquid and gases to pass through. petroleum fossil fuel formed from the remains of ancient organisms. Also called crude oil. photovoltaic adjective able to convert solar radiation to electrical energy. portable adjective able to be easily transported from one place to another. radioactive adjective having unstable atomic nuclei and emitting subatomic particles and radiation. recuperate verb to recover from an injury or strenuous activity. refuge public land set aside to protect native wildlife. renewable resource resource that can replenish itself at a similar rate to its use by people. Ring of Fire horseshoe-shaped string of volcanoes and earthquake sites around edges of the Pacific Ocean. sophisticated adjective knowledgeable or complex. spa facility, usually with mineral hot springs, offering health benefits. steam verb to heat something by placing it over boiling water. subsidence sinking or lowering of the Earth's surface, either by natural or man-made processes. technology the science of using tools and complex machines to make human life easier or more profitable. toxic adjective poisonous. turbine machine that captures the energy of a moving fluid, such as air or water. vent crack in the Earth's crust that spews hot gases and mineral-rich water. wind energy energy produced by the movement of air, and converted into electricity. FOR FURTHER EXPLORATION Articles & Profiles Maps Scientific American: One Hot Island Iceland s Renewable Geothermal Power U.S. Department of Energy: Geothermal Technologies Program Geothermal Maps Websites National Geographic Environment: Geothermal Energy U.S. Department of Energy: Geothermal National Renewable Energy Laboratory: Geothermal Energy Basics National Geographic Society. All rights reserved. 8 of 8

Geothermal. Geothermal Basics. Geothermal Energy Is Generated Deep Inside the Earth

Geothermal. Geothermal Basics. Geothermal Energy Is Generated Deep Inside the Earth Geothermal Where Geothermal Energy is Found Use of Geothermal Energy )> Geothermal Power Plants >~ Geothermal Heat Pumps ~> Geothermal Energy & the Enviroument Geothermal Basics What Is Geothermal Energy?

More information

Engr. Adnan Qamar Lecturer Energy Resources

Engr. Adnan Qamar Lecturer Energy Resources Engr. Adnan Qamar Lecturer engr.adnan.pk@gmail.com Energy Resources Geothermal Energy Definition: geothermal energy is the thermal energy stored in the earth s crust. 'Geothermal energy' is often used

More information

Magma On the other hand, molten rock is under active volcanoes at accessible depths. The temperatures excess 650 o C.

Magma On the other hand, molten rock is under active volcanoes at accessible depths. The temperatures excess 650 o C. Geothermal Energy Geothermal energy is energy from the earth. It lies deep within the Earth. The respective available annual energy globally is 996,000 PJ/year (PJ=petajoule=10 15 J). Currently, especially

More information

Chapter: Energy and Energy Resources

Chapter: Energy and Energy Resources Table of Contents Chapter: Energy and Energy Resources Section 1: What is energy? Section 2: Energy Transformations Section 3: Sources of Energy 1 What is energy? The Nature of Energy When an object has

More information

Introduction to Energy

Introduction to Energy Introduction to Energy Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types

More information

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources?

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? Chapter 12 Energy and Material Resources Section 1 Summary Fossil Fuels How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? A fuel

More information

Name Date Class. Overview Resources

Name Date Class. Overview Resources Directed Reading for Content Mastery Overview Resources Directions: Use the following terms to complete the concept map below. oil sunlight wind water coal natural gas geothermal Renewable energy resources

More information

Unit 2 Lesson 4 Effects of Energy Transfer. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 4 Effects of Energy Transfer. Copyright Houghton Mifflin Harcourt Publishing Company Check the Source! How do people use energy? Energy is the capacity to do work. People use energy to heat and cool their homes, provide light, manufacture goods, produce and prepare food, and move vehicles.

More information

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis:

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis: Biomass Description of biomass: Description of photosynthesis: Ways we turn biomass into energy we can use: Who uses biomass and for what purposes: Effect of using biomass on the environment: Important

More information

Renewable Energy Systems 10

Renewable Energy Systems 10 Renewable Energy Systems 10 Buchla, Kissell, Floyd Chapter Outline Geothermal Power Generation 10 Buchla, Kissell, Floyd 10-1 TYPES OF GEOTHERMAL RESOURCES 10-2 GEOTHERMAL ELECTRICAL POWER 10-3 LOW-TEMPERATURE

More information

Directed Reading. Section: Mineral Resources ORES. a nugget of pure metal. can be removed profitably. Skills Worksheet

Directed Reading. Section: Mineral Resources ORES. a nugget of pure metal. can be removed profitably. Skills Worksheet Skills Worksheet Directed Reading Section: Mineral Resources 1. How many different minerals have been identified in Earth s crust? 2. What are three examples of metals? 3. What are two examples of nonmetals?

More information

The history of geothermal power can be traced back to over 10,000 years ago to the American Paleo-Indians at their settlement in hot springs.

The history of geothermal power can be traced back to over 10,000 years ago to the American Paleo-Indians at their settlement in hot springs. The history of geothermal power can be traced back to over 10,000 years ago to the American Paleo-Indians at their settlement in hot springs. This history has been uncovered through the use of archeology

More information

WELCOME TO PERIOD 24: WATER ENERGY. Homework #23 is due today.

WELCOME TO PERIOD 24: WATER ENERGY. Homework #23 is due today. WELCOME TO PERIOD 24: WATER ENERGY Homework #23 is due today. PHYSICS 1104 PERIOD 24 What is the Earth s water cycle? How is water used to generate electricity? What effects will climate change have on

More information

Energy: Conservation and Transfer

Energy: Conservation and Transfer Energy: Conservation and Transfer Energy: Conservation and Transfer 8.P.2 Explain the environmental implications associated with the various methods of obtaining, managing and using energy resources. 8.P.2.1

More information

Unit 2: Electricity and Energy Resources

Unit 2: Electricity and Energy Resources 9 9 Table of Contents Unit 2: Electricity and Energy Resources Chapter 9: Energy Sources 9.1: Fossil Fuels 9.2: Nuclear Energy 9.3: Renewable Energy Sources Fossil Fuels 9.1 Using Energy You can see energy

More information

4/30/12. Chapter: Energy Sources

4/30/12. Chapter: Energy Sources Table of Contents Chapter: Energy Sources Section: Section : Section : Using Energy You can see energy being used in many ways, throughout the day. Furnaces and stoves use thermal energy to heat buildings

More information

Geothermal Power Renewable Energy or Ticket to Destruction

Geothermal Power Renewable Energy or Ticket to Destruction Geothermal Power Renewable Energy or Ticket to Destruction Geothermal Power generation or using the heat from the core of the earth to create renewable energy with little to no waste, even though it was

More information

Renewable Energy Alternatives

Renewable Energy Alternatives Renewable Energy Alternatives Reasons for Alternative Energy Fossil fuels won t last forever Renewable unlikely to run out Decrease air pollution and greenhouse gas emissions Less dependent on other nations

More information

Geothermal 101 An Overview

Geothermal 101 An Overview Geothermal 101 An Overview Randy Manion Renewable Resource Program Manager Western Area Power Administration 720-962-7423 manion@wapa.gov Graphics provided by NREL and EPRI Presentation Overview Why Geothermal

More information

Enhanced Geothermal Systems (EGS) Using CO 2 as Working Fluid

Enhanced Geothermal Systems (EGS) Using CO 2 as Working Fluid CCS School, 19 th -21 th April, 2012 Enhanced Geothermal Systems (EGS) Using CO 2 as Working Fluid Ruina Xu Department of Thermal Engineering, Tsinghua Univ. Beijing 1 What is Geothermal Energy? Geo: (Greek)

More information

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011 Alternative Energy Resources Environmental Earth Science Rev 2018, Spds 2011 Energy Sources Sun is the ultimate source of most energy on Earth. The Sun s energy is transferred from photosynthetic organisms

More information

Period 24 Solutions: Energy and Water

Period 24 Solutions: Energy and Water Period 24 Solutions: Energy and Water 24.1 The Earth s Water Cycle 1) Components of the Earth s water cycle a) What can happen to some of the water in lakes, rivers, oceans, and in the soil as the Sun

More information

RENEWABLE ENERGY NON-RENEWABLE ENERGY

RENEWABLE ENERGY NON-RENEWABLE ENERGY Hydro Solar Biomass RENEWABLE ENERGY The motion associated with rapidly falling water, waves and tidal currents can be harnessed to drive turbines and generate electricity. RENEWABLE ENERGY Energy from

More information

World Energy Sources & Fossil Fuel Power Production. Josh Barnes, Cyrus Hughlett...and Karl. SL/AP Physics Hour 2

World Energy Sources & Fossil Fuel Power Production. Josh Barnes, Cyrus Hughlett...and Karl. SL/AP Physics Hour 2 World Energy Sources & Fossil Fuel Power Production Josh Barnes, Cyrus Hughlett...and Karl. SL/AP Physics Hour 2 Different World Energy Sources There are many different forms of energy used throughout

More information

Natural Resources. Mr. Dvorin Muir Middle School

Natural Resources. Mr. Dvorin Muir Middle School Natural Resources Mr. Dvorin Muir Middle School NONRENEWABLE AND RENEWABLE RESOURCES HMMMM... What do you think nonrenewable resources are? Break it down... Nonrenewable? Resource? NONRENEWABLE RESOURCES

More information

Geothermal Energy: The Heat From the Earth. By: Alec, Matthew, Christian, Brandon, and Lyla

Geothermal Energy: The Heat From the Earth. By: Alec, Matthew, Christian, Brandon, and Lyla Geothermal Energy: The Heat From the Earth By: Alec, Matthew, Christian, Brandon, and Lyla Energy Production Geothermal energy isn't entirely renewable it will run out when the Earth does. In about 5 billion

More information

A is any natural material that is used by humans.

A is any natural material that is used by humans. Chapter 5 Notes Energy Resources Section 1 Natural Resources Describe how humans use natural resources. Compare renewable resources with nonrenewable resources. Explain three ways that humans can conserve

More information

Environmental Resources: Renewable & Non-Renewable Resources & Energy

Environmental Resources: Renewable & Non-Renewable Resources & Energy Directions: Fill in the blanks. Renewable Resources & Energy Segment 1. Renewable Resources Are significant resources which can be replenished and reused to reduce negative environmental Are used as a

More information

Sixth Grade Energy and Conservation Unit Parent Background Information

Sixth Grade Energy and Conservation Unit Parent Background Information Sixth Grade Energy and Conservation Unit Parent Background Information WHAT IS ENERGY? The nature of energy is very complex, but it is best described by these characteristics: energy is the ability to

More information

The desire for fossil fuel alternatives and environmentally friendly energy has

The desire for fossil fuel alternatives and environmentally friendly energy has Chris Schleck Bioresource Engineering Design 1 September 19, 2008 Geothermal Energy and Sustainable Design The desire for fossil fuel alternatives and environmentally friendly energy has grown dramatically

More information

I ve Got the Power! Types of Energy and how it affects our lives.

I ve Got the Power! Types of Energy and how it affects our lives. I ve Got the Power! Types of Energy and how it affects our lives. Categories Energy is broken down into 2 categories RENEWABLE And NON-RENEWABLE RENEWABLE Energy that comes from a source that can be replenished

More information

Fuel Information Sheet

Fuel Information Sheet Wood (Biomass) Maine has 17 million acres of forest. Wood is a renewable energy source; we can grow more trees and manage forested areas. Wood must be transported to where it is used. Wood requires storage

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore NU CL EAR ENERGY For the complete encyclopedic entry with media resources,

More information

4.2 The Water Cycle. Recycling water. Sharing water with the dinosaurs. The Sun drives the water cycle. Wind and weather. Gravity

4.2 The Water Cycle. Recycling water. Sharing water with the dinosaurs. The Sun drives the water cycle. Wind and weather. Gravity 4.2 The Water Cycle The Sun keeps water moving through the hydrosphere by providing energy. In this section, you will learn about the water cycle and where water goes so that it is available for people,

More information

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4 Lecture 11: Global Warming Human Acticities CO 2 CH 4 The initial appearance of human species: last 100,000 to 200,000 years Development of the first civilization: the last 10,000 years What is the sensitivity

More information

Earth s Energy Resources: GeothermaL

Earth s Energy Resources: GeothermaL Earth s Energy Resources: GeothermaL Geothermal energy comes from heat deep under the ground. This energy is produced in the core of the Earth. The heat from the core can melt rock into magma. The magma

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Chapter 4. Resources and Energy

Chapter 4. Resources and Energy Chapter 4 Resources and Energy I. Resources are classified into two main types. A. Non renewable resources 1. Resources that have a limited supply. 2. They cannot be replaced in a human lifetime. 3. Are

More information

Lecture 12 Fossil Fuels

Lecture 12 Fossil Fuels Lecture 12 Fossil Fuels Lecture 12 1. Introduction 2. Coal 3. Oil and Natural Gas 4. Synfuels and other Fossil-Fuel Resources 1 Fossil Fuels Fossil Fuels- Combustible deposits in the Earth s crust Composed

More information

AP Environmental Science II. Unit 2-2: Alternative Energy

AP Environmental Science II. Unit 2-2: Alternative Energy NOTE/STUDY GUIDE: Unit 2-2, Alternative Energy AP Environmental Science II, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE AP Environmental Science

More information

Science 8 Chapter 1 Section 1

Science 8 Chapter 1 Section 1 Science 8 Chapter 1 Section 1 Distribution of Water (pp. 8-13) How much fresh water do we have? The vast majority of water on Earth, about 97 percent, is salt water Two thirds of that fresh water supply

More information

Physics 100 Lecture 23. Geothermal Energy April 23, 2018

Physics 100 Lecture 23. Geothermal Energy April 23, 2018 1 Physics 100 Lecture 23 Geothermal Energy April 23, 2018 2 The Interior of the Earth 3 Plate Tectonics Earth s crust is divided into moving tectonic plates. The intersections of these plates are the focus

More information

Geothermal Resources: Providing Sustainable Energy For All. GEOL G By Mike Harpring

Geothermal Resources: Providing Sustainable Energy For All. GEOL G By Mike Harpring Geothermal Resources: Providing Sustainable Energy For All GEOL G190 16548 By Mike Harpring Abstract Geothermal energy natural heat from the earth s interior offers a clean and sustainable alternative

More information

Chapter: Conserving Resources

Chapter: Conserving Resources Table of Contents Chapter: Conserving Resources Section 1: Resources Section 2: Pollution Section 3: The Three Rs of Conservation Chapter 19 Section 1- Natural Resources What are fossil fuels? *Fossil

More information

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 7 Earth s Natural Resources Section 1 Electricity and Your Community What Do You See? Learning Outcomes In this section, you will Compare energy resources used to generate electricity in the United

More information

Section 1: Renewable Energy Today

Section 1: Renewable Energy Today Section 1: Renewable Energy Today Preview Bellringer Objectives Renewable Energy Solar Energy-Power from the Sun Passive Solar Heating Active Solar Heating Photovoltaic Cells Section 1: Renewable Energy

More information

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons atom the smallest unit of a chemical element, made up of protons, neutrons, and electrons biofuel any fuel that comes directly from organic matter found in present-day living things biomass organic matter

More information

Ch. 9 RTB - Energy Sources & Conversions

Ch. 9 RTB - Energy Sources & Conversions Ch. 9 RTB - Energy Sources & Conversions A. Types of Energy Sources 1. There are many different types of sources for energy 2. Energy comes from plants & Animals when living & Digested by another life

More information

Ph 313, Fall 2018: Study guide for the final exam.

Ph 313, Fall 2018: Study guide for the final exam. Major types of fossil fuels; their global distribution, and for how long the resources are expected to last. Major types of heat engines: piston steam, steam turbine, gas turbine, gasoline engine, Diesel

More information

GEOTHERMAL. snohomish county pud

GEOTHERMAL. snohomish county pud GEOTHERMAL snohomish county pud Geothermal Power Geothermal power literally meaning earth heat, from the Greek words geo and therme draws on the vast energy potential underneath our feet. It s a power

More information

Fossil Fuels, Fossil Rules and Fossil Fools

Fossil Fuels, Fossil Rules and Fossil Fools Name: Date: Fossil Fuels, Fossil Rules and Fossil Fools You ve probably heard the term fossil fuels before. Maybe you already know all about fossil fuels. Maybe you stopped and wondered: What are fossil

More information

Section 2: Energy and Resources

Section 2: Energy and Resources Section 2: Energy and Resources Preview Key Ideas Bellringer The Search for Resources Making Oil Worldwide Energy Use by Fuel Type Alternative Sources of Energy The Efficiency of Energy Conversion Key

More information

Possible Exam Questions for Other Topics in Chemistry 10

Possible Exam Questions for Other Topics in Chemistry 10 Climate Change (first exam) Possible Exam Questions for Other Topics in Chemistry 10 1. Convert between the following terms and definitions Anthracite = the highest rank of coal harder, glossy black coal

More information

Introduction to Geothermal Comfort Systems in INDIA

Introduction to Geothermal Comfort Systems in INDIA Introduction to Geothermal Comfort Systems in INDIA History Ancient earth sheltered homes 1912 Swiss Patent 1945 - First GSHP operating in North America in Indianapolis 1949 Canada s first GSHP installation

More information

Renewable Energy Today

Renewable Energy Today Chapter 18 Renewable Energy Today Renewable Energy energy from a source that is constantly being reformed. Many governments are planning to increase their use of renewable energy resources. This will reduce

More information

Student Guidebook Energy Workshops

Student Guidebook Energy Workshops 2017-18 Student Guidebook Energy Workshops Name School Energy Sources Boards Use the Energy Source Boards to connect the box on the right with the box on the left that finishes the sentence correctly.

More information

IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 03, 2017 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 03, 2017 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 03, 2017 ISSN (online): 2321-0613 Geothermal Energy Maaz Allah Khan 1 Faizan Quasim 2 Faraz Hussain 3 Imran Khan 4 Fazil

More information

4th Grade. Energy and Natural Resources.

4th Grade. Energy and Natural Resources. 1 4th Grade Energy and Natural Resources 2015 11 18 www.njctl.org 2 Energy and Natural Resources Human Energy Use Click on the topic to go to that section Renewable Energy Non Renewable Energy Environmental

More information

Tapping into the power of the Yellowstone Supervolcano.

Tapping into the power of the Yellowstone Supervolcano. Tapping into the power of the Yellowstone Supervolcano. By National Geographic, adapted by Newsela staff on 09.05.18 Word Count 872 Level 1030L The striking colors of the landscape make it easy to forget

More information

Chapter 24: Energy and Water

Chapter 24: Energy and Water Chapter 24: Energy and Water Goals of Period 24 Section 24.1: To describe the Earth s water cycle Section 24.2: To explain hydroelectric power generation Section 24.3: To discuss climate change and water

More information

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or no taste, color, or smell. Salt water water that contains

More information

Unit 7: Homework. 1.An organic chemical organized in rings or chains, including petroleum and natural gas is called: a) hydrocarbon

Unit 7: Homework. 1.An organic chemical organized in rings or chains, including petroleum and natural gas is called: a) hydrocarbon 1.An organic chemical organized in rings or chains, including petroleum and natural gas is called: a) hydrocarbon b) strip mining c) allowance trading d) primary production e) oil shale 2.Formation of

More information

Atmosphere. The layer of gas surrounding the Earth

Atmosphere. The layer of gas surrounding the Earth Earth and Space Notes: Atmosphere Atmosphere The layer of gas surrounding the Earth Breakdown: Nitrogen (~79%) Oxygen (~21%) Argon, CO2, methane, ozone, water, nitrous oxides, sulphur dioxide, etc Gases

More information

2010 Culver Media, LLC 1

2010 Culver Media, LLC 1 Alternating current Also known as AC power, alternating current is electricity that reverses direction within a circuit. The electricity we use in our homes does this 120 times per second. Appliances Devices

More information

SAMPLE PAGE. Sustainable Energy Sources By: Sue Peterson

SAMPLE PAGE. Sustainable Energy Sources By: Sue Peterson Page 38 Objective sight words (consumption, terrain, integral, orbit, originated, contemporary, remote); concepts (sustainable, renewable, photovoltaics, gasification) Vocabulary consumption originated

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

From surface to the reservoir, solving your geothermal challenges for over 50 years

From surface to the reservoir, solving your geothermal challenges for over 50 years GEOTHERMAL From surface to the reservoir, solving your geothermal challenges for over 50 years Solving challenges. 1 Geothermal Clean, renewable and plentiful, geothermal energy holds huge promise worldwide

More information

UNIT 4 SG 4. Resource Management - Land

UNIT 4 SG 4. Resource Management - Land UNIT 4 SG 4 Resource Management - Land I. NONRENEWABLE RESOURCES A. Fossil Fuels include coal, petroleum (oil), and natural gas. 1. Fossil fuels, when combusted, free up energy from the Sun that was stored

More information

greenhouse effect 1 of 5

greenhouse effect 1 of 5 This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry greenhouse effect

More information

Lesson 1.2 Recycling Matter

Lesson 1.2 Recycling Matter Lesson 1.2 Recycling Matter Lesson Objectives Define biogeochemical cycles. Describe the water cycle and its processes. Give an overview of the carbon cycle. Outline the steps of the nitrogen cycle. Lesson

More information

Fossil Fuels and the environment

Fossil Fuels and the environment Lecture -11: Fossil Fuels and the environment ENV 107: Introduction to Environmental Science Dr. A.K.M. Saiful Islam 16.1 Fossil Fuels Fossil fuels are all forms of stored solar energy. We say because

More information

Geothermal Energy. Dr. Mazen Abualtayef. Environmental Engineering Department Islamic University of Gaza, Palestine

Geothermal Energy. Dr. Mazen Abualtayef. Environmental Engineering Department Islamic University of Gaza, Palestine Geothermal Energy Dr. Mazen Abualtayef Environmental Engineering Department Islamic University of Gaza, Palestine Adapted from a presentation by Professor S.R. Lawrence Leeds School of Business, Environmental

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Resources Physical Geology 15/e, Chapter 22 Types of Geologic Resources Energy resources petroleum (oil and natural gas), coal, uranium,

More information

Overview of Chapter 11

Overview of Chapter 11 11 Fossil Fuels Overview of Chapter 11 Fossil Fuels Coal Coal Reserves Coal mining Environmental Effects of Burning Coal Oil and Natural Gas Exploration for Oil and Natural Gas Oil and Natural Gas reserves

More information

Earth Systems and Interactions

Earth Systems and Interactions CHAPTER The Earth System Earth Systems and Interactions What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

FACT FLASH. 5: Groundwater. What is groundwater? How does the ground store water? Fact Flash 5: Groundwater

FACT FLASH. 5: Groundwater. What is groundwater? How does the ground store water? Fact Flash 5: Groundwater FACT FLASH 5: Groundwater What is groundwater? Groundwater is fresh water (from rain or melting ice and snow) that soaks into the soil and is stored in the tiny spaces (pores) between rocks and particles

More information

How to Re-Use and Create Renewable Energy for Creating a More Environmentally Friendly and Ecologically Sustainable City

How to Re-Use and Create Renewable Energy for Creating a More Environmentally Friendly and Ecologically Sustainable City 26 How to Re-Use and Create Renewable Energy for Creating a More Environmentally Friendly and Ecologically Sustainable City Dr. Sabina Akhtar Assistant Professor American University in the emirates (AUE)

More information

LECTURE #24: Mega Disasters Climate Change

LECTURE #24: Mega Disasters Climate Change GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #24: Mega Disasters Climate Change Date: 17 April 2018 I. Early Earth was more similar to present-day Venus o very high amounts of carbon dioxide

More information

Natural Resources. Next Generation Science Standards MS-ESS3: Human Impacts on Earth s Systems

Natural Resources. Next Generation Science Standards MS-ESS3: Human Impacts on Earth s Systems Interactive Student Notebook: Chapter 5 Natural Resources Name: Date: Class Period: Next Generation Science Standards MS-ESS3: Human Impacts on Earth s Systems Common Core Standard RST.6-8.2: Determine

More information

downtown (Fig. E This enhances safety and has minimal costs (the original

downtown (Fig. E This enhances safety and has minimal costs (the original Geothermal energy Hot water from underground direct use In Klamath Falls, a geothermal deicer has being used on a section of local highway by the Oregon Department of Transportation since 1948. (79,81)

More information

WHAT IS LIQUEFIED NATURAL GAS?

WHAT IS LIQUEFIED NATURAL GAS? WHAT IS LIQUEFIED NATURAL GAS? WHAT IS NATURAL GAS? Natural gas is a colourless and odourless gas that is created from organic matter that has decayed for millions of years. Around the world, people use

More information

Chapter: Conserving Resources

Chapter: Conserving Resources Table of Contents Chapter: Conserving Resources Section 1: Resources Section 2: Pollution Section 3: The Three Rs of Conservation *Problems related to the use of Fossil Fuels Limited availability Pollution

More information

Energy Resources. Nonrenewable Energy Resources. Fossil Fuels

Energy Resources. Nonrenewable Energy Resources. Fossil Fuels Energy Resources Renewable resources are resources that can be replaced within a human life span or as they are used. Nonrenewable resources are resources that exist in limited amounts and cannot be replaced

More information

Plate Tectonics and the Geology of Montana. Energy Resources

Plate Tectonics and the Geology of Montana. Energy Resources Plate Tectonics and the Geology of Montana Energy Resources http://www.scotese.com/earth.htm http://www.scotese.com/earth.htm http://www.scotese.com/earth.htm http://www.scotese.com/earth.htm http://www.scotese.com/earth.htm

More information

2.2 - Nutrient Cycles. Carbon Cycle

2.2 - Nutrient Cycles. Carbon Cycle 2.2 - Nutrient Cycles Carbon Cycle Nutrients What are nutrients? Chemicals (C,O, N, P, H...) needed for life There is a constant amount of these nutrients on Earth and they are stored in different places.

More information

Chapter 11 Fossil Fuels

Chapter 11 Fossil Fuels Chapter 11 Fossil Fuels I. Energy Sources and Consumption A. Energy sources that were used were obtained locally and now they are worldwide Fossil fuels Nuclear energy Electricity B. Energy consumption

More information

Geothermal Energy:-An Effective Means of Renewable Energy Source

Geothermal Energy:-An Effective Means of Renewable Energy Source Geothermal Energy:-An Effective Means of Renewable Energy Source Vishal Ikshvaku 1, Shamasher Sharma 2, Vipin Maurya 3, Ajay Saroj 4 1,2,3,4Student, Mechanical Engineering Department, Rajarshi Rananjay

More information

UES Bright Students: The Conservation Generation Pre Visit PowerPoint Script for Teachers

UES Bright Students: The Conservation Generation Pre Visit PowerPoint Script for Teachers Slide 1 UES / Bright Students Title Slide Slide 2 Energy Introduction Energy. It s in you, your home, your environment it s in everyone and it s everywhere. Energy is what moves us, what makes life happen.

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

groundwater. Because watersheds are complex systems, each tends to respond differently to natural or human activities.

groundwater. Because watersheds are complex systems, each tends to respond differently to natural or human activities. The private development of Altos del María is located at an altitude between 550 and 1,000 meters above sea level in the environmentally sensitive Cordillera Central of Panama that separates the Pacific

More information

Binary Cycle Geothermal Power Systems

Binary Cycle Geothermal Power Systems Summary Binary Cycle Geothermal Power Systems 09.11.2016, Skuli Johannsson, Annad veldi ehf, Iceland skuli@veldi.is www.veldi.is Energy consumption of the world is predicted to increase considerably in

More information

Chapter 12 Nonrenewable Energy Resources

Chapter 12 Nonrenewable Energy Resources Chapter 12 Nonrenewable Energy Resources Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Exploring Energy Science Texts for Close Reading

Exploring Energy Science Texts for Close Reading Science Texts for Close Reading Solar Energy Solar energy is a way to harness sunlight for heating or electricity. There are different ways to convert sunlight into usable energy. Concentrated solar power

More information

Information card 1. Traditional coal. FACT Coal

Information card 1. Traditional coal. FACT Coal Information card 1 Traditional coal How was it formed? Most coal deposits were formed around 300 million years ago during the Carboniferous period. The world was covered in tropical forest then. In some

More information

Water Cycle. Are you really drinking the same water as the caveman?

Water Cycle. Are you really drinking the same water as the caveman? Water Cycle Are you really drinking the same water as the caveman? Water Cycle Water is always on the move. Rain falling where you live may have been water in the ocean just days before. And the water

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore GREENHO U SE EFFECT For the complete encyclopedic entry with media

More information

CHAPTER - 14 SOURCES OF ENERGY

CHAPTER - 14 SOURCES OF ENERGY CHAPTER - 14 SOURCES OF ENERGY PREPARED BY NIKHIL V JONES 1) Characteristics of a good source of fuel :- i) It should have a high energy output per unit mass or volume. ii) It should be easily available.

More information

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy?

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy? What is energy? Energy is the ability to do work or change the system. What are the various sources of energy? Fossil fuels Oil (Petroleum) Propane Natural gas Coal Alternative fuels Nuclear Wind Solar

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information