i ~4 applications WTP Functional materials for sustainable energy Edited by

Size: px
Start display at page:

Download "i ~4 applications WTP Functional materials for sustainable energy Edited by"

Transcription

1 Woodhead Publishing Series in Energy: Number 35 Functional materials for sustainable energy applications Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards WTP WOODHEAD PUBLISHING i ~4 Oxford Cambridge Philadelphia New Delhi

2 Contents Contributor contact details Woodhead Publishing Series in Energy Preface xiii xix xxv Part I Functional materials for solar power 1 Silicon-based photovoltaic solar cells 3 N. E. B. Cowern, Newcastle University, UK 1.1 Introduction Polysilicon production Crystallisation and wafering Solar cells: materials issues and cell architectures Conclusions References 19 2 Photovoltaic (PV) thin-films for solar cells 22 S. J. C. Irvine, Glyndwr University, UK 2.1 Introduction Amorphous silicon thin-film photovoltaic (PV) Cadmium telluride thin-film PV Copper indium diselenide thin-film PV Materials sustainability Future trends Sources of further information and advice References 39 3 Rapid, low-temperature processing of dye-sensitized solar cells 42 P. J. Holliman, A. Connell and M. L. Davies, Bangor University, UK and M. J. Carnie and T. M. Watson, Swansea University, UK v

3 vi Contents 3.1 Introduction to dye-sensitized solar cells (DSCs) Manufacturing issues Sensitization Electrodes Electrolyte Quality control (QC)/lifetime testing Conclusions and future trends Acknowledgements References 60 4 Thermophotovoltaic (TPV) devices: introduction and modelling 67 R. J. Nicholas and R. S. Tuley, University of Oxford, UK 4.1 Introduction to thermophotovoltaics (TPVs) Practical TPV cell performance Modelling TPV cells Tandem TPV cells Conclusions References 84 5 Photoelectrochemical cells for hydrogen generation 91 K. G. U. Wijayantha, Loughborough University, UK 5.1 Introduction Photoelectrochemical cells: principles and energetics Photoelectrochemical cell configurations and efficiency considerations Semiconductor photoanodes: material challenges Semiconductor photocathodes: material challenges Advances in photochemical cell materials and design Interfacial reaction kinetics Future trends Acknowledgements References Appendix: abbreviations 143 Part II Functional materials for hydrogen production and storage 6 Reversible solid oxide electrolytic cells for largescale energy storage: challenges and opportunities 149 B.Yildiz, Massachusetts Institute of Technology, USA

4 Contents vii 6.1 Introduction to reversible solid oxide cells Operating principles and functional materials Degradation mechanisms in solid oxide electrolysis cells Research needs and opportunities Summary and conclusions References Membranes, adsorbent materials and solvent-based materials for syngas and hydrogen production 179 S. J. Doong, UOP, a Honeywell Company, USA 7.1 Introduction H2-selective membrane materials CCyselective membrane materials Adsorbent materials for H2/C02 separation Solvent-based materials for H2/C02 separation Future trends Sources of further information and advice References Functional materials for hydrogen storage 217 M. Felderhoff, Max-Planck-Institul fur Kohlenforschung, Germany 8.1 Introduction Hydrogen storage with metal hydrides: an introduction Hydrogen storage with interstitial hydrides, A1H3 and MgH Hydrogen storage with complex metal hydrides Hydrogen storage using other chemical systems Hydrogen storage with porous materials and nanoconfined materials Applications of hydrogen storage Conclusions References 241 Part III Functional materials for fuel cells 9 The role of the fuel in the operation, performance and degradation of fuel cells 249 D. J. L. Brett, University College London, UK and Imperial College London, UK, E. Agante, N. P. Brandon

5 viii Contents and E. Brightman, Imperial College London, UK, R. J. C. Brown, National Physical Laboratory, UK, M. Manage, University College London, UK and I. Staffell, University of Birmingham, UK 9.1 Introduction Thermodynamics of fuel cell operation and the effect of fuel on performance Hydrocarbon fuels and fuel processing Methanol Other fuels Deleterious effects of fuels on fuel cell performance Conclusions Acknowledgements References Membrane electrode assemblies for polymer electrolyte membrane fuel cells 279 K. Scott, Newcastle University, UK 10.1 Introduction Requirements for membrane electrode assemblies (MEAs) Porous backing layer materials Membrane materials MEA electrode catalyst layer MEA performance Conclusions References Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel ceils (DMFCs) 312 A. Manthiram, X. Zhao and W. Li, University of Texas at Austin, USA 11.1 Introduction Historical development and technical challenges Methanol oxidation reaction catalysts Oxygen reduction reaction (ORR) catalysts Proton exchange membranes Membrane electrode assembly (MEA) fabrication and structure 343

6 Contents ix 11.7 Conclusions and future trends Acknowledgements References Electrolytes and ion conductors for solid oxide fuel cells (SOFCs) 370 N. Preux, A. Rolle and R.N. Vannier, Ecole Nationale Superieure de Chimie de Lille, France 12.1 Introduction Oxide ion conduction Electrolyte materials for solid oxide fuel cells (SOFCs) Preparation and characterization of electrolyte materials for SOFCs Conclusions References Novel cathodes for solid oxide fuel cells 402 J.-C. Grenier, J.-M. Bassat and F. Mauvy, ICMCB-CNRS, Universite de Bordeaux, France 13.1 Introduction The oxygen reduction reaction in solid oxide fuel cells (SOFCs) and implications for cathode materials Conventional cathode materials: perovskite-type oxides Innovative cathode materials: structural aspects of 2D non-stoichiometric perovskite-related oxides Comparative transport properties and electrochemical performances of 2D non-stoichiometric oxides Ln2Ni04+5 oxides: innovative and flexible materials for oxygen electrodes of protonic ceramic fuel cells (PCFCs) and electrolyzers Prospective conclusions References Novel anode materials for solid oxide fuel cells 445 S. W. Tao, P. I. Cowin and R. Lan, University of Strathclyde, UK 14.1 Introduction Requirements for solid oxide fuel cell anode materials Cermet solid oxide fuel cell anode materials Perovskite-structured solid oxide fuel cell anode materials 454

7 X Contents 14.5 Other oxide anode materials Non-oxide anode materials Poisoning of solid oxide fuel cell anode materials Conclusions and future trends References Thin-film solid oxide fuel cell (SOFC) materials 478 A. J. Jacobson, C. Yu and W. Gong, University of Houston, USA 15.1 Introduction Electrolytes Anode materials Cathode materials Device structures Conclusions Acknowledgments References Appendix: glossary Proton conductors for solid oxide fuel cells (SOFCs) 515 E.Traversa and E. Fabbri, formerly National Institute for Materials Science (NIMS), Japan 16.1 The proton conduction mechanism in high temperature proton conductor (HTPC) electrolytes Reaction processes at the electrode/electrolyte when using HTPC electrolytes HTPC: the state of the art and challenges Electrodes for HTPC electrolytes: the state of the art and challenges Solid oxide fuel cells (SOFCs) based on HTPC electrolytes: current status and future perspectives Conclusions References 532 Part IV Functional materials for demand reduction and energy storage 17 Materials and techniques for energy harvesting 541 M. E. KizmooLou and E. M. Yeatman, Imperial College London, UK

8 Contents xi 17.1 Introduction Theory of motion energy harvesting Piezoelectric harvesting Electrostatic harvesting Thermoelectric harvesting Electromagnetic energy harvesting from motion Suspension materials for motion energy harvesting References Lithium batteries: current technologies and future trends 573 B. Scrosati and X Hassoun, Sapienza University of Rome, Italy 18.1 Introduction Lithium-ion batteries Safety of lithium-ion batteries Energy density of lithium-ion batteries Future trends Acknowledgements References Rare-earth magnets: properties, processing and applications 600 I. R. Harris, University of Birmingham, UK and G. W. Jewell, University of Sheffield, UK 19.1 Introduction Properties of permanent magnetic materials Improving the properties of permanent magnetic materials Processing of permanent magnets Properties of commercially manufactured permanent magnets Applications of permanent magnet materials References 638 PartV Appendix Appendix: Atomic-scale computer simulation of functional materials: methodologies and applications 643 A. Chroneos, Imperial College London, UK and University of Cambridge, UK and C. L. Bishop, D. C. Parfitt and R. W. Grimes, Imperial College London, UK A.l Introduction 643

9 xii Contents A.2 Methodological approaches 643 A.3 Application of methodologies 652 A.4 Future trends 658 A.5 References 658 Index 663

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Thin Film Solar Cells Fabrication, Characterization and Applications

Thin Film Solar Cells Fabrication, Characterization and Applications Thin Film Solar Cells Fabrication, Characterization and Applications Edited by Jef Poortmans and Vladimir Arkhipov IMEC, Leuven, Belgium John Wiley & Sons, Ltd Contents Series Preface Preface xiii xv 1

More information

Corrosion of. magnesium alloys. Edited by. Guang-Ling Song WOODHEAD PUBLISHING. pppvr- Oxford Cambridge Philadelphia New Delhi

Corrosion of. magnesium alloys. Edited by. Guang-Ling Song WOODHEAD PUBLISHING. pppvr- Oxford Cambridge Philadelphia New Delhi Corrosion of magnesium alloys Edited by Guang-Ling Song WOODHEAD PUBLISHING pppvr- Oxford Cambridge Philadelphia New Delhi Contents Contributor contact details xiii Preface xvii Part I Fundamentals 1 Corrosion

More information

Electrochemical Energy Conversion Revised Roadmap

Electrochemical Energy Conversion Revised Roadmap International Institute for Carbon-Neutral Energy Research 1 Electrochemical Energy Conversion Revised Roadmap June 2017 A World Premier Institute 2 Division Objective This division conducts fundamental

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

Alternative Energy Technologies

Alternative Energy Technologies Alternative Energy Technologies John Oakey Chris Bagley Scope Wave and tidal Wind Biomass Hydrogen Fuel Cells Solar (PV) Wave and Tidal Energy Capable of delivering significant amounts of power Many variants

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO)

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) EFFIPRO Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) FP7-Energy-NMP-2008-1 227560 Truls Norby University of Oslo 1. Project achievements EFFIPRO partnership

More information

Research seminar Solar energy harvesting with the application of nanotechnology

Research seminar Solar energy harvesting with the application of nanotechnology Research seminar Solar energy harvesting with the application of nanotechnology By B.GOLDVIN SUGIRTHA DHAS, AP/EEE SNS COLLEGE OF ENGINEERING, Coimbatore Objective By 2050 30 TW The fossil fuels will exhausted

More information

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes Dan Brett 1&2, Pattaraporn Lohsoontorn 2, Nigel Brandon

More information

Contents. Abbreviations and Symbols... 1 Introduction... 1

Contents. Abbreviations and Symbols... 1 Introduction... 1 Contents Abbreviations and Symbols... XIII 1 Introduction... 1 2 Experimental Techniques... 5 2.1 Positron Sources... 7 2.2 Positron Lifetime Spectroscopy... 9 2.2.1 Basics of the Measurement... 10 2.2.2

More information

ARTIFICIAL SOLAR FUELS GENERATORS

ARTIFICIAL SOLAR FUELS GENERATORS ARTIFICIAL SOLAR FUELS GENERATORS Rachel Segalman Acting Division Director, Materials Science Division Lawrence Berkeley National Laboratories And Professor of Chemical Engineering, UC Berkeley NATURE

More information

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Trevor Davies, University of Chester FCH2 2015, 21 st May 2015 PEM Fuel Cell Market Predictions Outline Conventional PEM fuel cells

More information

Latest Solar Technologies

Latest Solar Technologies Latest Solar Technologies Mrs. Jothy.M. Saji Mrs. Sarika. A. Korade Lecturer Lecturer IE Dept, V.P.M s Polytechnic, Thane IE Dept, V.P.M s Polytechnic, Thane Mob no. : 9892430301 Mob no. : 9960196179 Email:

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Electrochemistry of Cleaner Environments

Electrochemistry of Cleaner Environments Electrochemistry of Cleaner Environments Electrochemistry of Cleaner Environments Edited by ~ohn O'M. Bockris Electrochemistry Laboratory John Harrison Laboratory of Chemistry University of Pennsylvania

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle Commercialization

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle Commercialization System Cost Reduction and Subcomponent Performance Enhancement David L. Wood III Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen offer the

More information

Solid Oxide Fuel Cells for CO2 reduction

Solid Oxide Fuel Cells for CO2 reduction Solid Oxide Fuel Cells for CO2 reduction Carbon Capture and U.lisa.on1 22/2/2017 Energy Materials Group at St Andrews Prof. John Irvine Well known in SOFC research Leads established group with long track

More information

Solar Electric Power Generation - Photovoltaic Energy Systems

Solar Electric Power Generation - Photovoltaic Energy Systems Stefan C.W. Krauter Solar Electric Power Generation - Photovoltaic Energy Systems Modeling of Optical and Thermal Performance, Electrical Yield, Energy Balance, Effect on Reduction of Greenhouse Gas Emissions

More information

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering FOURTH EDITION R. Winston Revie Senior Research Scientist CANMET Materials Technology Laboratory Natural Resources Canada

More information

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems 2.4M funding for an EPSRC Networking Centre + 1.4M Matching from Industry Joint Centre involving Cambridge, Newcastle, Queen Mary and UCL. 400k earmarked for networking activities Start Date: 1 December

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

June 15, /06/15 Advanced Course in Molecular Environmental Science 1

June 15, /06/15 Advanced Course in Molecular Environmental Science 1 June 15, 2017 2017/06/15 Advanced Course in Molecular Environmental Science 1 chi-square (chi-squared) test: statistics 2 n i 1 x i m m i i 2 x i : observed datum m i : expected on certain assumption k:

More information

Preface... VII ForewordbyDr.FranzAlt... IX Foreword by Dr. Hermann Scheer... XIII Table of Contents... XV. 1.3 Global warming by CO

Preface... VII ForewordbyDr.FranzAlt... IX Foreword by Dr. Hermann Scheer... XIII Table of Contents... XV. 1.3 Global warming by CO Contents Preface... VII ForewordbyDr.FranzAlt... IX Foreword by Dr. Hermann Scheer... XIII Table of Contents.... XV 1 Introduction...1 1.1 World s Energy Consumption...1 1. CO -Emissions by Humankind...

More information

engineering of light alloys

engineering of light alloys Surface engineering of light alloys Aluminium, magnesium and titanium alloys Edited by Hanshan Dong TECHNISCHE INFORMATIONSBIBLIOTHEK UNIVERSITATSBIBLIOTHEK HANNOVER Boca Raton CRC Press Boston New York

More information

Seminar on Fuel Cells for Automotive Applications. Department of Chemical Technology

Seminar on Fuel Cells for Automotive Applications. Department of Chemical Technology Seminar on Fuel Cells for Automotive Applications Department of Chemical Technology 1 Dept. of Chemical Technology Established in 1959 The department is striving for pursuing the excellence in research

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1 PEFC Systems PEFC stacks require tight control of fuel and air feed quality, humidity level, and temperature for sustained high-performance operation. To provide this, PEFC stacks must be incorporated

More information

Imperial College London

Imperial College London Imperial College London John A Kilner BCH Steele Chair in Energy Materials Dept. of Materials, Faculty of Engineering Imperial College, London, UK j.kilner@imperial.ac.uk Imperial College London Imperial

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur.

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur. Roadmap: Batteries Self assembly A123 High production and material costs Reduce use of Cobalt, then replace it with low cost Replace Cobalt entirely with low cost Low production and material costs Low

More information

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode? Outline Corrosion - Introduction Corrosion of Metals - e.g. Rusting of iron in water Electrochemical Cell Electrode Potential in Electrochemical Cell Standard Electromotive Force Example Relative Corrosion

More information

Contents. Acknowledgments...xi Preface... xiii

Contents. Acknowledgments...xi Preface... xiii Contents Acknowledgments...xi Preface... xiii CHAPTER 1 Energy and Energy Management...1 1.1 Introduction...1 1.2 Energy Resources, Energy Sources, and Energy Production...1 1.3 Global Energy Demand and

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

High-energy. ball milling. processing of nanopowders. Mechanochemical. Malgorzata Sopicka-Lizer. Edited by WOODHEAD PUBLISHING LIMITED

High-energy. ball milling. processing of nanopowders. Mechanochemical. Malgorzata Sopicka-Lizer. Edited by WOODHEAD PUBLISHING LIMITED High-energy ball milling Mechanochemical processing of nanopowders Edited by Malgorzata Sopicka-Lizer CRC Press Boca Raton Boston New York Washington, DC WOODHEAD PUBLISHING LIMITED Oxford Cambridge New

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Introduction to Department of Energy Conversion and Storage Jens Oluf Jensen Proton Conductors Department of Energy Conversion and Storage Kemitorvet 207 DK-2800 Lyngby Denmark jojen@dtu.dk (DTU) Founded

More information

Center for Physical Sciences and Technology Vilnius, Lithuania Project Ideas

Center for Physical Sciences and Technology Vilnius, Lithuania Project Ideas Project Ideas No.1 Feasibility and Limits of Aqueous Electrochemical Energy Storage Technologies relating to Sustainability, Safety and Scalable Manufacturing No.2 Hydrogen Generation via Overall Electrolytic

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

UK Fuel Cell Research & Development

UK Fuel Cell Research & Development UK Fuel Cell Research & Development John Kilner Department of Materials Imperial College, London SW7 2AZ, UK And UK Energy Research Centre (UKERC) www.ukerc.ac.uk United Kingdom Energy Research Centre

More information

Optics and Photovoltaics Physics 9810b Course Information: Winter 2012

Optics and Photovoltaics Physics 9810b Course Information: Winter 2012 The University of Western Ontario Department of Physics and Astronomy Optics and Photovoltaics Physics 9810b Course Information: Winter 2012 1. Course Description Objective of this course is to provide

More information

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Venkatesan V. Krishnan Department of Chemical Engineering IIT Delhi Barriers to the hydrogen

More information

Solar energy for electricity production: Photovoltaics (PV)

Solar energy for electricity production: Photovoltaics (PV) Solar energy for electricity production: Photovoltaics (PV) Chiara Candelise Doctoral researcher Imperial Centre for Energy Policy and Technology (ICEPT) Page 1 Energy from the Sun HEAT (Solar thermal

More information

Power Generation Technologies

Power Generation Technologies Power Generation Technologies Paul Breeze AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO ELSEVIER Newnes is an imprint of Elsevier Newnes Contents

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Renewable Energy CHEM REBECCA SCHEIDT

Renewable Energy CHEM REBECCA SCHEIDT Renewable Energy CHEM20204 2018.3.20 REBECCA SCHEIDT Energy Consumption 1 Energy Consumption U.S. Energy Consumption in 2016 by Source Wind, 2.2% Hydro, 2.5% Biomass, 4.9% Nuclear, 8.6% Coal, 14.6% Solar,

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES THE CATALYST GROUP RESOURCES INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion

More information

P1: a/b P2: c/d QC: e/f T1: g c01 JWBK310-O Hayre November 3, :11 Printer: Yet to come PART I COPYRIGHTED MATERIAL FUEL CELL PRINCIPLES

P1: a/b P2: c/d QC: e/f T1: g c01 JWBK310-O Hayre November 3, :11 Printer: Yet to come PART I COPYRIGHTED MATERIAL FUEL CELL PRINCIPLES PART I FUEL CELL PRINCIPLES COPYRIGHTED MATERIAL 1 2 CHAPTER 1 INTRODUCTION You are about to embark on a journey into the world of fuel cells and electrochemistry. This chapter will act as a roadmap for

More information

Corrosion protection and control using nanomaterials

Corrosion protection and control using nanomaterials Corrosion protection and control using nanomaterials Edited by Viswanathan S. Saji and Ronald Cook WP WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi Contents Contributor contact details Preface

More information

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Clean Coal Technologies Conference 2009 19 May 2009 Joshua Mermelstein

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information

Delivery of Sustainable Hydrogen

Delivery of Sustainable Hydrogen Delivery of Sustainable Hydrogen John Irvine UK EPSRC Supergen Consortium XIV 1 st October 2008-2012 Hydrogen Production HDelivery Mission HDelivery The hydrogen economy needs large volumes of hydrogen

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

THE STRUCTURE OF RARE-EARTH METAL SURFACES

THE STRUCTURE OF RARE-EARTH METAL SURFACES THE STRUCTURE OF RARE-EARTH METAL SURFACES S. D. Barrett University of Liverpool, UK S. S. Dhesi European Synchrotron Radiation Facility, France ICP Imperial College Press Contents CONTENTS Preface List

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Gas and surface applications of atmospheric pressure plasmas

Gas and surface applications of atmospheric pressure plasmas Gas and surface applications of atmospheric pressure plasmas Eugen Stamate Technical University of Denmark Roskilde 4000, Denmark OUTLINE Introduction of DTU Energy Conversion and Storage Activities in

More information

Innovative SOFC Architecture based on Triode Operation. Deliverable D6.3. Dissemination through papers in specialized and non-specialized press

Innovative SOFC Architecture based on Triode Operation. Deliverable D6.3. Dissemination through papers in specialized and non-specialized press Innovative SOFC Architecture based on Triode Operation Deliverable D6.3 Dissemination through papers in specialized and non-specialized press June, 2016 PROJECT DETAILS Title: Innovative SOFC Architecture

More information

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet.

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet. 1 1.1 Hydrogen energy CHAPTER 1 INTRODUCTION Energy is the most essential and vital entity to survive on this Planet. From past few decades majority of the mankind depend on fossil fuels for transportation,

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

science, technology Biomass combustion and engineering Edited by Lasse Rosendahl WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi

science, technology Biomass combustion and engineering Edited by Lasse Rosendahl WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi Woodhead Publishing Series in Energy: Number 40 Biomass combustion science, technology and engineering Edited by Lasse Rosendahl WP WOODHEAD PUBLISHING Oxford Cambridge Philadelphia New Delhi Contents

More information

Contents. Acknowledgments XI Preface XIII List of Abbreviations XV

Contents. Acknowledgments XI Preface XIII List of Abbreviations XV V Acknowledgments XI Preface XIII List of Abbreviations XV 1 Introduction 1 1.1 Global Energy Flow 1 1.2 Natural and Anthropogenic Greenhouse Effect 1 1.3 Limit to Atmospheric CO 2 Concentration 5 1.4

More information

International Conference on Innovative Electrochemical Energy Materials and Technologies (EEMT2015) Nov 8-11, 2015, Nanning, China

International Conference on Innovative Electrochemical Energy Materials and Technologies (EEMT2015) Nov 8-11, 2015, Nanning, China International Conference on Innovative Electrochemical Energy Materials and Technologies (EEMT2015) Nov 8-11, 2015, Nanning, China Organizing Committee Conference Chair Yanlin Zhao Conference Co-Chairs

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

Chalcogenide. glasses. Preparation, properties and applications. Edited by. Jean-Luc Adam and Xianghua Zhang. Woodhead Publishing Series in

Chalcogenide. glasses. Preparation, properties and applications. Edited by. Jean-Luc Adam and Xianghua Zhang. Woodhead Publishing Series in Woodhead Publishing Series in Electronic and Optical Materials: Number 44 Chalcogenide glasses Preparation, properties and applications Edited by Jean-Luc Adam and Xianghua Zhang WP WOODHEAD PUBLISHING

More information

Triangle Game. Materials Triangle game board instructions playing pieces tape. Time: 1 hour

Triangle Game. Materials Triangle game board instructions playing pieces tape. Time: 1 hour High-energy Hydrogen III Teacher Page Triangle Game Student Objective The student will be able to explain in his or her own words the meaning of fundamental term and concepts of hydrogen energy Materials

More information

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

Electrospun quaternized polyvinyl alcohol nanofibers with core-shell structure and their composite in alkaline fuel cell application

Electrospun quaternized polyvinyl alcohol nanofibers with core-shell structure and their composite in alkaline fuel cell application 1 Electrospun quaternized polyvinyl alcohol nanofibers with core-shell structure and their composite in alkaline fuel cell application S. Jessie Lue, Ph.D. Department Head and Professor Department of Chemical

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS MATERIALS FOR SOLAR ENERGY: SOLAR CELLS ROBERTO MENDONÇA FARIA PRESIDENT OF Brazil-MRS (SBPMat) The concentration of CO 2 in Earth s atmosphere (2011) is approximately 392 ppm (parts per million) by volume,

More information

Industries. Hydrogen in France: & Universities. "IFHY" network. Prof. Olivier Joubert

Industries. Hydrogen in France: & Universities. IFHY network. Prof. Olivier Joubert Hydrogen in France: & Universities "IFHY" network Industries Prof. Olivier Joubert olivier.joubert@cnrs-imn.fr www.gdr-hyspac.cnrs.fr FRANCO-GERMAN CONFERENCE ON HYDROGEN, 22nd October 2018, Paris Hydrogen

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

Solar Hydrogen Production

Solar Hydrogen Production Solar Hydrogen Production University of Oslo Centre for Materials and Nanotechnology Athanasios Chatzitakis a.e.chatzitakis@smn.uio.no Japan-Norway Energy Science Week 2015 27-28 May 2015 Oslo Innovation

More information

gasification technologies for Fluidized bed combustion and near-zero emission Edited by Fabrizio Scala Woodhead Publishing Series in Energy: Number 59

gasification technologies for Fluidized bed combustion and near-zero emission Edited by Fabrizio Scala Woodhead Publishing Series in Energy: Number 59 Woodhead Publishing Series in Energy: Number 59 Fluidized bed technologies for near-zero emission combustion and gasification Edited by Fabrizio Scala WP WOODHEAD PUBLISHING Oxford Cambridge Philadelphia

More information

Advances in Materials for Solid Oxide Fuel Cells

Advances in Materials for Solid Oxide Fuel Cells Page 1 of 7 Page 1 of 7 Return to Web Version Advances in Materials for Solid Oxide Fuel Cells By: Raymond J. Gorte, Material Matters Volume 5 Article 4 Chemical & Biomolecular Engineering University of

More information

Solar to Fuels Conversion Technologies

Solar to Fuels Conversion Technologies Solar to Fuels Conversion Technologies AN MIT FUTURE OF SOLAR ENERGY STUDY WORKING PAPER Solar to Fuels Conversion Technologies Harry L. Tuller Department of Materials Science and Engineering Massachusetts

More information

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited Roll to Roll Flexible Microgroove Based Photovoltaics John Topping Chief Scientist Big Solar Limited Big Solar Limited, Washington Business Centre 2 Turbine Way, Sunderland SR5 3NZ Email: John@powerroll.solar

More information

China-EU Institute for Clean and Renewable Energy at HUST (ICARE) Renewable Energy Research Internships (SIP)

China-EU Institute for Clean and Renewable Energy at HUST (ICARE) Renewable Energy Research Internships (SIP) China-EU Institute for Clean and Renewable Energy at HUST (ICARE) Renewable Energy Research Internships (SIP) Project summary ICARE Projects are all about clean and renewable energy development, we are

More information

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY I. INTRODUCTION. Chemical pollution is a serious problem that demands the attention of the scientific community in the early 21 st century. The consequences of pollution are numerous: heating of the atmosphere

More information

FC and Battery EVs Projects

FC and Battery EVs Projects FC and Battery EVs Projects E. Peled and D. Golodnitsky School of Chemistry Israel National Research Center for Electrochemical Propulsion (INREP) Nir Ezion, 10-10-2012 FC projects 1. Core-shell platinum

More information

Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications

Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications María José Hermida Castro *1, Demetrio Hermida Castro 2, Xosé Manuel Vilar Martínez 3, José A. Orosa 4 Department

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

An experimental study of kit fuel cell car to supply power

An experimental study of kit fuel cell car to supply power An experimental study of kit fuel cell car to supply power Mustafa I. Fadhel Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia. mustafa.i.fadhel@mmu.edu.my

More information

High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following

High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following Bilge Yildiz, Mujid Kazimi, Charles Forsberg Massachusetts Institute of Technology Department of Nuclear

More information

Teaching About Hydrogen Fuel Cells

Teaching About Hydrogen Fuel Cells Teaching About Hydrogen Fuel Cells NSTA - March 12, 2011 Chris Keller Curriculum Developer SEPUP The Lawrence Hall of Science UC Berkeley 2011 The Regents of the University of California 1 For More Information

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

Research Article Volume 6 Issue No. 4

Research Article Volume 6 Issue No. 4 DOI 10.4010/2016.1042 ISSN 2321 3361 2016 IJESC Research Article Volume 6 Issue No. 4 Analysis of Dc - Dc Converters for Renewable Energy System P.Janaki 1, Y.Prasanthi 2, S.Vijaya Laxmi 3, B.Narayanamma

More information