Atomic number (number of protons) Element symbol. Ne Na. Kr Sr. Tm Yb Lu Th. Np Pu

Size: px
Start display at page:

Download "Atomic number (number of protons) Element symbol. Ne Na. Kr Sr. Tm Yb Lu Th. Np Pu"

Transcription

1 1

2 Figure 2.1a H Atomic number (number of protons) Element symbol Mass number (number of protons plus neutrons) 6 C 12 He 2 Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

3 Table 2.1 3

4 Figure Electron configuration Structural formula Space-filling model Ball-and-stick model H H Hydrogen gas (H 2 ) O O Oxygen gas (O 2 ) H H C H H Methane (CH 4 )

5 Figure Figure Complete outer shells Na Cl Na + Cl Na Sodium atom Cl Chlorine atom Na + Sodium ion Cl Chloride ion Sodium chloride (NaCl)

6 Hydrogen Bonds 6 The polarity of water results in weak electrical attractions between neighboring water molecules. These weak attractions are called hydrogen bonds. (slightly +) H H (slightly +) O (slightly ) 2013 Pearson Education, Inc.

7 Figure Hydrogen bond Slightly positive charge Slightly negative charge

8 Figure 2.17a 8 OH OH OH OH H + OH OH H + OH OH OH H + OH + H H + H + H + OH H + H + H + H + H + OH Basic solution Neutral solution Acidic solution

9 Figure 3.UN02 Large biological molecules Functions Components Examples 9 Carbohydrates Dietary energy; storage; plant structure Monosaccharide Monosaccharides: glucose, fructose; Disaccharides: lactose, sucrose; Polysaccharides: starch, cellulose Lipids Long-term energy storage (fats); hormones (steroids) Components of a triglyceride Fats (triglycerides); steroids (testosterone, estrogen) Proteins Enzymes, structure, storage, contraction, transport, etc. Side group Amino acid Lactase (an enzyme); hemoglobin (a transport protein) Nucleic acids Information storage T Nucleotide DNA, RNA

10 Figure 3.16 Amino group Carboxyl group 10 Side group The general structure of an amino acid Hydrophobic side group Hydrophilic side group Leucine Serine

11 Figure Carboxyl Amino 11 OH H H 2 O Dehydration reaction Peptide bond

12 Figure Nitrogenous base (A, G, C, or T) Thymine (T) Phosphate group Phosphate Base T (a) Atomic structure Sugar (deoxyribose) Sugar (b) Symbol used in this book

13 Figure Adenine (A) Guanine (G) Thymine (T) Cytosine (C) Adenine (A) Guanine (G) Thymine (T) Cytosine (C) Space-filling model of DNA

14 Figure Sugar-phosphate backbone C T G A Nucleotide Base pair A T T Hydrogen bond G A A T C A G T A T Bases C G A T (a) DNA strand (polynucleotide) (b) Double helix (two polynucleotide strands)

15 Figure DNA 15 1 Synthesis of mrna in the nucleus mrna Nucleus Cytoplasm 2 Movement of mrna into cytoplasm via nuclear pore mrna Ribosome 3 Synthesis of protein in the cytoplasm Protein

16 Figure 4.UN13 16 Mitochondrion Chloroplast Light energy PHOTOSYNTHESIS Chemical energy (food) CELLULAR RESPIRATION ATP

17 17 Animation: Energy Concepts Right click slide / select Play 2013 Pearson Education, Inc.

18 Figure Greatest potential energy Climbing converts kinetic energy to potential energy. Diving converts potential energy to kinetic energy. Least potential energy

19 Figure Energy Triphosphate Diphosphate Adenosine P P P Adenosine P P P ATP ADP Phosphate (transferred to another molecule)

20 Figure ATP Cellular respiration: chemical energy harvested from fuel molecules ADP P Energy for cellular work

21 Figure 5.UN01 21 Energy for cellular work Adenosine P P P ATP Adenosine P P P cycle ATP Adenosine triphosphate Energy from organic fuel ADP Adenosine diphosphate Phosphate (can be transferred to another molecule)

22 Figure Active site 1 Ready for substrate Enzyme (sucrase)

23 Figure Substrate (sucrose) Active site 1 Ready for substrate 2 Substrate binding Enzyme (sucrase)

24 Figure Substrate (sucrose) Active site 1 Ready for substrate 2 Substrate binding Enzyme (sucrase) H 2 O 3 Catalysis

25 Figure Substrate (sucrose) Active site 1 Ready for substrate 2 Substrate binding Enzyme (sucrase) Fructose Glucose H 2 O 4 Product released 3 Catalysis

26 Figure 6.2 Sunlight energy enters ecosystem 26 Photosynthesis C 6 H 12 O 6 CO 2 O 2 H 2 O Cellular respiration ATP drives cellular work Heat energy exits ecosystem

27 Figure 6.UN01 27 C 6 H 12 O CO 2 6 H 2 O ATP O 2 Glucose Oxygen Carbon dioxide Water Energy

28 Figure 6.6 Mitochondrion Cytoplasm 28 Cytoplasm Animal cell Plant cell Cytoplasm Mitochondrion High-energy electrons via carrier molecules Glycolysis 2 Glucose Pyruvic acid Citric Acid Cycle Electron Transport ATP ATP ATP

29 Figure 6.7a 29 INPUT OUTPUT 2 Pyruvic acid Glucose

30 Figure 6.7b-3 30 NADH P NAD + P 2 ADP 2 ATP 2 ATP 2 ADP P 2 P 3 1 P P 2 P 3 NAD + NADH P 2 ADP 2 ATP Energy investment phase Energy harvest phase

31 Figure INPUT (from glycolysis) 2 NAD + Oxidation of the fuel generates NADH NADH OUTPUT (to citric acid cycle) CoA Pyruvic acid 1 Pyruvic acid loses a carbon as CO 2 CO 2 Acetic acid Coenzyme A 3 Acetic acid attaches to coenzyme A Acetyl CoA

32 Figure 6.10 INPUT Citric acid OUTPUT 32 1 Acetic acid 2 CO 2 2 ADP + P 3 NAD + Citric Acid Cycle ATP 3 NADH 3 4 FAD FADH Acceptor molecule

33 Figure Space between membranes Protein complex Electron carrier H + H + H + H + H + 3 H + H + H + H + H + H + H + 5 H + Inner mitochondrial membrane Electron flow H + FADH 2 NADH NAD + 1 H + 2 FAD H + Matrix Electron transport chain ATP synthase H + H O H + H 2 O ADP P H + 6 ATP

34 Figure INPUT 2 ADP + 2 P 2 ATP 2 CO 2 released OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 Pyruvic acid 2 NADH 2 NAD H + 2 Ethyl alcohol

35 Figure 6.12a 35 Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport 2 ATP 2 ATP About 28 ATP by direct synthesis by direct synthesis by ATP synthase

36 Figure Photosynthetic cells Vein Chloroplast Inner and outer membranes Stroma Thylakoid space Granum CO 2 O 2 Stomata Leaf cross section Interior cell LM Colorized TEM

37 The Simplified Equation for Photosynthesis 37 Light energy 6 CO 2 6 H 2 O C 6 H 12 O 6 Photosynthesis Carbon dioxide Water Glucose 6 O 2 Oxygen gas

38 Figure H 2 O Chloroplast 38 Light Light reactions ATP NADPH O 2

39 Figure H 2 O Chloroplast CO 2 39 Light NADP + Light reactions ADP + P Calvin cycle ATP NADPH O 2 Sugar

40 Figure 7-UN02 40 Light H 2 O CO 2 Light reactions NADP + ADP + P ATP NADPH Calvin cycle O 2 Sugar

41 Figure 7-UN03 41 Light H 2 O CO 2 Light reactions NADP + ADP + P ATP NADPH Calvin cycle O 2 Sugar

42 Figure Primary electron acceptor 2 Energy to make ATP Primary electron acceptor 2e 2e 3 NADP + NADPH 2e Light Light 1 Reactioncenter chlorophyll H 2 O Reactioncenter chlorophyll NADPH-producing photosystem 2 H O 2 2e Water-splitting photosystem

43 Figure 7-UN07 CO 2 43 ATP NADPH Calvin cycle ADP NADP + P G3P P Glucose and other compounds (such as cellulose and starch)

44 Figure DNA double helix Beads on a string Histones TEM Nucleosome Tight helical fiber Thick supercoil Duplicated chromosomes (sister chromatids) Centromere TEM

45 Figure 8.6 S phase (DNA synthesis; chromosome duplication) 45 Interphase: metabolism and growth (90% of time) G 1 G 2 Mitotic (M) phase: cell division (10% of time) Cytokinesis (division of cytoplasm) Mitosis (division of nucleus)

46 Figure 8.7a INTERPHASE PROPHASE 46 Centrosomes (with centriole pairs) Chromatin Early mitotic spindle Centrosome Centromere Fragments of nuclear envelope Nuclear envelope Plasma membrane Chromosome (two sister chromatids) Spindle microtubules

47 Figure 8.7b METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS 47 Nuclear envelope forming Cleavage furrow Spindle Daughter chromosomes

48 Figure 8.12 Haploid gametes (n = 23) 48 n Egg cell n Sperm cell MEIOSIS FERTILIZATION Multicellular diploid adults (2n = 46) 2n Diploid zygote (2n = 46) MITOSIS and development Key Haploid (n) Diploid (2n)

49 Figure Chromosomes 2 Homologous 3 duplicate. chromosomes separate. Sister chromatids separate. Pair of homologous chromosomes in diploid parent cell Duplicated pair of homologous chromosomes Sister chromatids INTERPHASE BEFORE MEIOSIS MEIOSIS I MEIOSIS II

50 Figure 8.14a 50 MEIOSIS I: HOMOLOGOUS CHROMOSOMES SEPARATE INTERPHASE PROPHASE I METAPHASE I ANAPHASE I Centrosomes (with centriole pairs) Sites of crossing over Spindle Microtubules attached to chromosome Sister chromatids remain attached Nuclear envelope Chromatin Sister chromatids Pair of homologous chromosomes Centromere Chromosomes duplicate. Homologous chromosomes pair up and exchange segments. Pairs of homologous chromosomes line up. Pairs of homologous chromosomes split up.

51 Figure 8.14b 51 MEIOSIS II: SISTER CHROMATIDS SEPARATE TELOPHASE I AND CYTOKINESIS PROPHASE II METAPHASE II ANAPHASE II TELOPHASE II AND CYTOKINESIS Cleavage furrow Sister chromatids separate Haploid daughter cells forming Two haploid cells form; chromosomes are still doubled. During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing single chromosomes.

52 Figure 8.15 MITOSIS MEIOSIS 52 Prophase Duplicated chromosome Metaphase Chromosomes align. Parent cell Prophase I Metaphase I Homologous pairs align. MEIOSIS I Site of crossing over Anaphase Telophase Sister chromatids separate. 2n 2n Anaphase I Telophase I Homologous chromosomes separate. Sister chromatids separate. n n n n MEIOSIS I Haploid n = 2 MEIOSIS II

53 Figure 8.18 Prophase I of meiosis Duplicated pair of homologous chromosomes 53 Homologous chromatids exchange corresponding segments. Chiasma, site of crossing over Metaphase I Sister chromatids remain joined at their centromeres. Spindle microtubule Metaphase II Gametes Recombinant chromosomes combine genetic information from different parents. Recombinant chromosomes

54 In an Abbey Garden 54 A character is a heritable feature that varies among individuals. A trait is a variant of a character. Each of the characters Mendel studied occurred in two distinct traits Pearson Education, Inc.

55 Figure Dominant Recessive Dominant Recessive Flower color Flower position Purple White Pod shape Pod color Inflated Green Constricted Yellow Axial Terminal Stem length Seed color Seed shape Yellow Round Green Wrinkled Tall Dwarf

56 Monohybrid Crosses For each inherited character, an organism inherits two alleles, one from each parent. An organism is homozygousfor that gene if both alleles are identical. An organism is heterozygous for that gene if the alleles are different Pearson Education, Inc.

57 Monohybrid Crosses 57 Geneticists distinguish between an organism s physical appearance and its genetic makeup. An organism s physical appearance is its phenotype. An organism s genetic makeup is its genotype Pearson Education, Inc.

58 Figure 9.6 P Generation Genetic makeup (alleles) 58 Alleles carried by parents Gametes Purple flowers PP All P White flowers pp All p F 1 Generation (hybrids) Alleles segregate Gametes 1 2 P Purple flowers All Pp 1 2 p F 2 Generation (hybrids) Sperm from F 1 plant P p Eggs from F 1 plant P p PP Pp Phenotypic ratio 3 purple : 1 white Pp pp Genotypic ratio 1 PP : 2 Pp : 1 pp

59 Figure Homologous chromosomes Gene loci Dominant allele P a B Genotype: P PP Homozygous for the dominant allele a aa Homozygous for the recessive allele b Bb Recessive allele Heterozygous with one dominant and one recessive allele

60 Figure 9.24 P Generation Round-yellow seeds (RRYY) Y R Y R MEIOSIS y r y r Wrinkled-green seeds (rryy) 60 Gametes R Y FERTILIZATION y r F 1 Generation Law of Segregation: Follow the long chromosomes (carrying R and r) taking either the left or right branch. The R and r alleles segregate in anaphase I of meiosis. Only one long chromosome ends up in each gamete. Gametes Y R R Y R R Y r y r r y R r Y y MEIOSIS Metaphase I (alternative arrangements) Metaphase II All round-yellow seeds (RrYy) Y y y Y Y y y r r r r Y r Y R y R Law of Independent Assortment: Follow both the long and the short chromosomes. They are arranged in either of two equally likely ways at metaphase I. R y R They sort independently, giving four gamete types. Fertilization recombines the r and R alleles at random. F 2 Generation RY ry ry Ry FERTILIZATION AMONG THE F 1 PLANTS 9 : 3 : 3 : Fertilization results in the 9:3:3:1 phenotypic ratio in the F 2 generation.

61 Figure A B a b A B Parental gametes a b Pair of homologous chromosomes Crossing over A b a B Recombinant gametes

62 Figure 9.UN01 62 Fertilization Alleles Diploid cell (contains paired alleles, alternate forms of a gene) Meiosis Haploid gametes (allele pairs separate) Gamete from other parent Diploid zygote (contains paired alleles)

63 DNA and RNA Structure 63 DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. A nucleotide polymer is a polynucleotide. Nucleotides are joined by covalent bonds between the sugar of one nucleotide and the phosphate of the next, forming a sugar-phosphate backbone Pearson Education, Inc.

64 Figure Phosphate group Nitrogenous base Sugar DNA nucleotide Nitrogenous base (can be A, G, C, or T) Thymine (T) DNA double helix Phosphate group DNA nucleotide Sugar (deoxyribose) Polynucleotide Sugar-phosphate backbone

65 Figure Hydrogen bond (a) Ribbon model (b) Atomic model (c) Computer model

66 The Central Dogma of Molecular Biology 66 Central dogma of molecular biology Formulated by Francis Crick Genetic information is transferred within biological system in 3 distinct processes Replication Transcription Translation 2013 Pearson Education, Inc.

67 The Central Dogma of Molecular Biology 67 Replication creating an exact copy. Using nucleotide sequence in DNA to produce another double stranded DNA molecule with the exact same sequences Transcription Same language and essentially the same words but in a slightly different format. Uses nucleotide sequence in DNA to produce an equivalent nucleotide sequence in an RNA molecule Translation Converting words from one language into different words in a different language. Using nucleotide sequence in RNA to produce a sequence of amino acids in a polypeptide according to specific translation rules. In essence going from the language of nucleotides to the language of amino acids Pearson Education, Inc.

68 68 Replication Transcription Translation Template DNA DNA RNA Polymer synthesized Monomer DNA RNA Polypeptide nucleotide (deoxyribose) nucleotide (ribose) Amino acid Polymerizing enzyme DNA polymerase RNA polymerase ribosome initiation site origin of replication promoter termination site none terminator start site (start codon) 1 of 3 stop codons

69 Figure DNA TRANSCRIPTION RNA Nucleus Cytoplasm TRANSLATION Protein

70 Figure Gene 1 Gene 2 DNA molecule Gene 3 DNA strand TRANSCRIPTION RNA TRANSLATION Codon Polypeptide Amino acid

71 Figure 10.16a 71 trna binding sites P site A site mrna binding site Large subunit Small subunit Ribosome (a) A simplified diagram of a ribosome

72 Figure 10.16b 72 Next amino acid to be added to polypeptide Growing polypeptide trna mrna Codons (b) The players of translation

73 Figure trna binding sites P site A site Growing polypeptide Next amino acid to be added to polypeptide mrna binding site Large subunit Small subunit Ribosome mrna trna (a) A simplified diagram of a ribosome Codons (b) The players of translation

74 Figure Polypeptide Amino acid 74 P site mrna Anticodon A site 1 Codons Codon recognition ELONGATION Stop codon 2 New peptide bond Peptide bond formation mrna movement 3 Translocation

75 HOW AND WHY GENES ARE REGULATED 75 Every somatic cell in an organism contains identical genetic instructions. They all share the same genome. So what makes cells different from one another? 2013 Pearson Education, Inc.

76 HOW AND WHY GENES ARE REGULATED 76 In cellular differentiation, cells become specialized in structure and function. Certain genes are turned on and off in the process of gene regulation Pearson Education, Inc.

77 Patterns of Gene Expression in Differentiated Cells 77 In gene expression, a gene is turned on and transcribed into RNA and information flows from genes to proteins and genotype to phenotype. Information flows from DNA to RNA to proteins. The great differences among cells in an organism must result from the selective expression of genes Pearson Education, Inc.

78 Figure Colorized TEM Colorized SEM Colorized TEM Gene for a glycolysis enzyme Pancreas cell White blood cell Nerve cell Antibody gene Insulin gene Hemoglobin gene

79 Gene Regulation in Bacteria 79 Natural selection has favored bacteria that express only certain genes only at specific times when the products are needed by the cell. So how do bacteria selectively turn their genes on and off? 2013 Pearson Education, Inc.

80 Figure 11.2 DNA 80 mrna Protein Operon turned off (lactose absent) DNA mrna Protein Lactose Operon turned on (lactose inactivates repressor)

81 Genes That Cause Cancer 81 As early as 1911, certain viruses were known to cause cancer. Oncogenes are genes that cause cancer and found in viruses Pearson Education, Inc.

82 Oncogenes and Tumor-Suppressor Genes 82 Proto-oncogenes are normal genes with the potential to become oncogenes, found in many animals, and often genes that code for growth factors, proteins that stimulate cell division or tumor supressorgeneswhich code for proteins that inhibit cell growth and division 2013 Pearson Education, Inc.

83 Oncogenes and Tumor-Suppressor Genes 83 A cell can acquire an oncogene from a virus or from the mutation of one of its own proto-oncogenes Pearson Education, Inc.

84 Figure Proto-oncogene DNA Mutation within gene Multiple copies of gene Gene in new position, under new controls Oncogene New promoter Hyperactive growth-stimulating protein Normal growth-stimulating protein in excess

85 Figure 11.UN09 Proto-oncogene (normal) Oncogene 85 Mutation Normal protein Mutant protein Normal regulation of cell cycle Out-of-control growth (leading to cancer) Normal growth-inhibiting protein Defective protein Tumor-suppressor gene (normal) Mutation Mutated tumor-suppressor gene

86 Homeostasis 86 Homeostasis is the body s ability to stay relatively unchanged even when the world around it changes. The internal environment of vertebrates includes the interstitial fluid that fills the spaces between cells and exchanges nutrients and wastes with microscopic blood vessels Pearson Education, Inc.

87 Figure External environment Animal s internal environment HOMEOSTATIC MECHANISMS Large external changes Small internal changes

88 Negative and Positive Feedback 88 Most mechanisms of homeostasis depend on a principle called negative feedback, in which the results of a process inhibit that same process, such as a thermostat that turns off a heater when room temperature rises to the set point Pearson Education, Inc.

89 Figure Response: Heating stops Thermostat (control center) turns heater off 89 Room temperature drops Stimulus: Room temperature is above set point Set point: Room temperature 20 C (68 F) Room temperature rises Stimulus: Room temperature is below set point Response: Heating starts Thermostat (control center) turns heater on

90 Negative and Positive Feedback 90 Less common is positive feedback, in which the results of a process intensify that same process, such as uterine contractions during childbirth Pearson Education, Inc.

Families on the Periodic Table

Families on the Periodic Table Families on the Periodic Table Elements on the periodic table can be grouped into families based on their chemical properties. Each family has a specific name to differentiate it from the other families

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

Chapter 3. DNA Replication & The Cell Cycle

Chapter 3. DNA Replication & The Cell Cycle Chapter 3 DNA Replication & The Cell Cycle DNA Replication and the Cell Cycle Before cells divide, they must duplicate their DNA // the genetic material DNA is organized into strands called chromosomes

More information

1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1

1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 1 From the syllabus: 1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1 l. Nucleic

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA RNA PROTEIN Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA Molecule of heredity Contains all the genetic info our cells inherit Determines

More information

Central Dogma. 1. Human genetic material is represented in the diagram below.

Central Dogma. 1. Human genetic material is represented in the diagram below. Central Dogma 1. Human genetic material is represented in the diagram below. 4. If 15% of a DNA sample is made up of thymine, T, what percentage of the sample is made up of cytosine, C? A) 15% B) 35% C)

More information

Groups of Elements 3B 5B 6B 7B 2 C. 10 Na. 36 Rb. 54 Cs. 86 Fr. 57 Ac. 71 Th. Nitrogen group. Alkali metals. Alkaline earth metals.

Groups of Elements 3B 5B 6B 7B 2 C. 10 Na. 36 Rb. 54 Cs. 86 Fr. 57 Ac. 71 Th. Nitrogen group. Alkali metals. Alkaline earth metals. Groups of Elements * * Li He C N O 8 F 9 Ne 0 B Be H Al Si P S Cl Ar 8 K 9 Ca 0 Sc Ti V Cr Mn Fe Co Ni 8 Cu 9 Zn 0 Ga Ge As Se Br Kr Rb Sr 8 Y 9 Zr 0 Nb Mo Tc Ru Rh Pd Ag Cd 8 In 9 Sn 0 Sb Te I Xe Cs Ba

More information

1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast

1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast 1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast chromosomes, chromatids, genes, and alleles. 3. Compare and contrast

More information

Hole s Essentials of Human Anatomy & Physiology

Hole s Essentials of Human Anatomy & Physiology Hole s Essentials of Human Anatomy & Physiology David Shier Jackie Butler Ricki Lewis Created by Dr. Melissa Eisenhauer Head Athletic Trainer/Assistant Professor Trevecca Nazarene University Amended by

More information

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans 1 The BIG BANG The Universe was created 13.8 billion

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

Molecular Biology of the Gene

Molecular Biology of the Gene Molecular Biology of the Gene : where the genetic information is stored, blueprint for making proteins. RNA: Always involved in protein synthesis Macromolecules (polymers!) Monomers (units): nucleotides

More information

Biology Lecture 2 Genes

Biology Lecture 2 Genes Genes Definitions o Gene: DNA that codes for a single polypeptide/mrna/rrna/trna o Euchromatin: region of DNA containing genes being actively transcribed o Heterochromatin: region of DNA containing genes

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Unit 2 Review: DNA, Protein Synthesis & Enzymes

Unit 2 Review: DNA, Protein Synthesis & Enzymes 1. One of the functions of DNA is to A. secrete vacuoles.. make copies of itself.. join amino acids to each other. D. carry genetic information out of the nucleus. 2. Two sugars found in nucleic acids

More information

CELLULAR PROCESSES; REPRODUCTION. Unit 5

CELLULAR PROCESSES; REPRODUCTION. Unit 5 CELLULAR PROCESSES; REPRODUCTION Unit 5 Cell Cycle Chromosomes and their make up Crossover Cytokines Diploid (haploid diploid and karyotypes) Mitosis Meiosis What is Cancer? Somatic Cells THE CELL CYCLE

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Higher Human Biology. Unit 1: Human Cells

Higher Human Biology. Unit 1: Human Cells Calderglen High School Higher Human Biology Unit 1: Human Cells Homework Questions Contents Page Sub-Topic 1: Differentiation and stem cells 3-5 Sub-Topic 2: DNA and its replication 6-10 Sub-Topic 3: RNA,

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

1. Mitosis = growth, repair, asexual reproduc4on

1. Mitosis = growth, repair, asexual reproduc4on Places Muta4ons get passed on: Cell Reproduc4on: 2 types of cell reproduc4on: 1. Mitosis = growth, repair, asexual reproduc4on Photocopy machine Growth/Repair Passed on in the same body 2. Meiosis = sexual

More information

Chapter 10: Gene Expression and Regulation

Chapter 10: Gene Expression and Regulation Chapter 10: Gene Expression and Regulation Fact 1: DNA contains information but is unable to carry out actions Fact 2: Proteins are the workhorses but contain no information THUS Information in DNA must

More information

Discuss the ethical considerations that must be taken into account when using embryonic stem cells for research.

Discuss the ethical considerations that must be taken into account when using embryonic stem cells for research. Revised Higher Human Biology Unit 1 Revision Summary STEM CELLS, DIFFERENTATION & CANCER CELLS Stem cells are undifferentiated biological cells, that can differentiate into specialized cells and can divide

More information

Cells and Tissues. Overview CELLS

Cells and Tissues. Overview CELLS Cells and Tissues WIll The basic unit of structure and function in the human body is the cell. Each of a cell's parts, or organelles, as well as the entire cell, is organized to perform a specific function.

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Read and take notes on pages

Read and take notes on pages Protein Synthesis Read and take notes on pages 336-340 What is protein? Proteins Polypeptide chains of amino acids Are enzymes that catalyze biochemical reactions and are vital to metabolism. They have

More information

DNA, Replication and RNA

DNA, Replication and RNA DNA, Replication and RNA The structure of DNA DNA, or Deoxyribonucleic Acid, is the blue prints for building all of life. DNA is a long molecule made up of units called NUCLEOTIDES. Each nucleotide is

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology 6- Important Molecules of Living Systems Proteins Nucleic Acids Taft College Human Physiology Proteins Proteins- made from: C, H, O, N, and S. Proteins are very large molecules composed of long chains

More information

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

Chapter 12. DNA TRANSCRIPTION and TRANSLATION Chapter 12 DNA TRANSCRIPTION and TRANSLATION 12-3 RNA and Protein Synthesis WARM UP What are proteins? Where do they come from? From DNA to RNA to Protein DNA in our cells carry the instructions for making

More information

Genetics and Heredity. Mr. Gagnon

Genetics and Heredity. Mr. Gagnon Genetics and Heredity Mr. Gagnon Key Terms: Traits Heredity Genetics Purebred Genes Alleles Recessive Allele Dominant Allele Hybrids Key Concepts: What factors control the inheritance of traits in organisms?

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments.

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments. Fundamentals of Genetics 1. What scientist is responsible for our study of heredity? 2. Define heredity. 3. What plant did Mendel use for his hereditary experiments? 4. Name the 7 characteristics, giving

More information

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein This is also known as: The central dogma of molecular biology Protein Proteins are made

More information

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells?

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? Replication Review 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? 3. Where does DNA Replication take place in the cell cycle? 4. 4. What guides DNA Replication?

More information

DNA Structure & the Genome. Bio160 General Biology

DNA Structure & the Genome. Bio160 General Biology DNA Structure & the Genome Bio160 General Biology Lecture Outline I. DNA A nucleic acid II. Chromosome Structure III. Chromosomes and Genes IV. DNA vs. RNA I. DNA A Nucleic Acid Structure of DNA: Remember:

More information

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce Chromosomes Chromosomes Strands of DNA that contain all of the genes an organism needs to survive and reproduce Genes Segments of DNA that specify how to build a protein genes may specify more than one

More information

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides Name: Date: 1. A strand of DNA consists of thousands of smaller, repeating units known as A. lipids B. amino acids C. nucleotides D. polysaccarides 2. Which two bases are present in equal amounts in a

More information

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling Name: 2.5 Genetics Objectives At the end of this sub section students should be able to: 2.5.1 Heredity and Variation 1. Discuss the diversity of organisms 2. Define the term species 3. Distinguish between

More information

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis General, rganic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis Learning bjectives: q Nucleosides & Nucleo@des:

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

DNA STRUCTURE. Nucleotides: Nitrogenous Bases (Carry the Genetic Code) Expectation Sheet: DNA & Cell Cycle. I can statements: Basic Information:

DNA STRUCTURE. Nucleotides: Nitrogenous Bases (Carry the Genetic Code) Expectation Sheet: DNA & Cell Cycle. I can statements: Basic Information: Expectation Sheet: DNA & Cell Cycle NAME: Test is 11/8/17 I can statements: I can discuss how DNA is found in all organisms and that the structure is common to all living things. I can diagram and label

More information

Review? - What are the four macromolecules?

Review? - What are the four macromolecules? Review? - What are the four macromolecules? Lipids Carbohydrates Protein Nucleic Acids What is the monomer of nucleic acids and what do nucleic acids make up? Nucleotides; DNA and RNA 12-1 DNA DNA Stands

More information

NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH

NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 11/14 11/15 11/16 11/17 11/18 Non-Mendelian Genetics DNA Structure and Replication 11/28

More information

Division Ave. High School Ms. Foglia AP Biology. Nucleic acids. AP Biology Nucleic Acids. Information storage

Division Ave. High School Ms. Foglia AP Biology. Nucleic acids. AP Biology Nucleic Acids. Information storage Nucleic acids 2006-2007 Nucleic Acids Information storage 2006-2007 1 DNA Nucleic Acids Function: u genetic material stores information w genes w blueprint for building proteins n DNA RNA proteins transfers

More information

STUDY GUIDE for BIOL 110

STUDY GUIDE for BIOL 110 STUDY GUIDE for BIOL 110 1. CHEMISTRY a. Structure of the Atom i) Subatomic Particles: protons, electrons, neutrons (1) Charges (2) Mass ii) Atomic Number and Atomic Mass (1) Determine number of subatomic

More information

Neurospora mutants. Beadle & Tatum: Neurospora molds. Mutant A: Mutant B: HOW? Neurospora mutants

Neurospora mutants. Beadle & Tatum: Neurospora molds. Mutant A: Mutant B: HOW? Neurospora mutants Chapter 10: Central Dogma Gene Expression and Regulation Mutant A: Neurospora mutants Mutant B: Not made Not made Fact 1: DNA contains information but is unable to carry out actions Fact 2: Proteins are

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

What is DNA??? DNA = Deoxyribonucleic acid IT is a molecule that contains the code for an organism s growth and function

What is DNA??? DNA = Deoxyribonucleic acid IT is a molecule that contains the code for an organism s growth and function Review DNA and RNA 1) DNA and RNA are important organic compounds found in cells, called nucleic acids 2) Both DNA and RNA molecules contain the following chemical elements: carbon, hydrogen, oxygen, nitrogen

More information

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Umm AL Qura University THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Dr. Neda Bogari www.bogari.net EMERY'S ELEMENTS OF MEDICAL GENETICS Peter Turnpenny and Sian Ellard 13 th edition 2008 COURSE SYLLABUS

More information

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION DNA and the Language of Life RECAP Synthesis= Making something Protein Synthesis= Making Proteins Three steps in Protein Synthesis

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

DNA Function: Information Transmission

DNA Function: Information Transmission DNA Function: Information Transmission DNA is called the code of life. What does it code for? *the information ( code ) to make proteins! Why are proteins so important? Nearly every function of a living

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

DNA- THE MOLECULE OF LIFE

DNA- THE MOLECULE OF LIFE DNA- THE MOLECULE OF LIFE STRUCTURE OF DNA DNA (Deoxyribonucleic Acid): DNA is a long, stringy, twisted molecule made up of nucleotides that carries genetic information. DISCOVERIES Rosalind Franklin,

More information

DNA & Protein Synthesis UNIT D & E

DNA & Protein Synthesis UNIT D & E DNA & Protein Synthesis UNIT D & E How this Unit is broken down Chapter 10.1 10.3 The structure of the genetic material Chapter 10.4 & 10.5 DNA replication Chapter 10.6 10.15 The flow of genetic information

More information

C. Incorrect! Second Law: Law of Independent Assortment - Genes for different traits sort independently of one another in the formation of gametes.

C. Incorrect! Second Law: Law of Independent Assortment - Genes for different traits sort independently of one another in the formation of gametes. OAT Biology - Problem Drill 20: Chromosomes and Genetic Technology Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick

More information

Chapter 2 DNA extended response [108 marks]

Chapter 2 DNA extended response [108 marks] Chapter 2 DNA extended response [108 marks] 1a. Describe the genetic code and its relationship to polypeptides and proteins. Remember, up to TWO quality of construction marks per essay. a. (the genetic

More information

DNA- THE MOLECULE OF LIFE. Link

DNA- THE MOLECULE OF LIFE. Link DNA- THE MOLECULE OF LIFE Link STRUCTURE OF DNA DNA (Deoxyribonucleic Acid): DNA is a long, stringy, twisted molecule made up of nucleotides that carries genetic information. DISCOVERIES Rosalind Franklin,

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Transcription Basics DNA is the genetic material Nucleic acid Capable of self-replication and synthesis of RNA RNA is the middle man Nucleic acid Structure and base sequence are

More information

3. INHERITED MUTATIONS

3. INHERITED MUTATIONS THE CENTRAL DOGMA OF BIOLOGY 1. DNA B4.2 The genetic information encoded in DNA molecules provides instructions for assembling protein molecules. Genes are segments of DNA molecules. Inserting, deleting,

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Nucleic acids AP Biology

Nucleic acids AP Biology Nucleic acids 2006-2007 Nucleic Acids Information storage 2006-2007 Nucleic Acids Function: u genetic material DNA stores information w genes w blueprint for building proteins n DNA RNA proteins transfers

More information

RNA & PROTEIN SYNTHESIS

RNA & PROTEIN SYNTHESIS RNA & PROTEIN SYNTHESIS DNA & RNA Genes are coded DNA instructions that control the production of proteins within the cell. The first step in decoding these genetic messages is to copy part of the nucleotide

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

SOLUZIONE DEL LEARN BY DOING

SOLUZIONE DEL LEARN BY DOING Sadava, Hillis, Heller, Berenbaum La nuova biologia.blu SOLUZIONE DEL LEARN BY DOING Di seguito sono riportate le soluzioni degli esercizi delle sezioni Learn by doing, esercizi con approccio CLIL dei

More information

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein? Lesson 1 - RNA Do you remember What is a gene? What is RNA? How does it differ from DNA? What is protein? Gene Segment of DNA that codes for building a protein DNA code is copied into RNA form, and RNA

More information

Components of DNA. Components of DNA. Aim: What is the structure of DNA? February 15, DNA_Structure_2011.notebook. Do Now.

Components of DNA. Components of DNA. Aim: What is the structure of DNA? February 15, DNA_Structure_2011.notebook. Do Now. Aim: What is the structure of DNA? Do Now: Explain the Hershey Chase experiment and what was its conclusion? Homework Read pp. 298 299 P.299 3,4,6.7 Do Now Paperclip Combos Material: 8 paperclips, 2 each

More information

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons, From Gene to Protein I. Transcription and translation are the two main processes linking gene to protein. A. RNA is chemically similar to DNA, except that it contains ribose as its sugar and substitutes

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases.

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases. DNA and RNA Nucleic Acids What is a Nucleic Acid? Nucleic Acids are organic molecules that carry information needed to make proteins Remember: proteins carry out ALL cellular activity There are two types

More information

Chapter 5 DNA and Chromosomes

Chapter 5 DNA and Chromosomes Chapter 5 DNA and Chromosomes DNA as the genetic material Heat-killed bacteria can transform living cells S Smooth R Rough Fred Griffith, 1920 DNA is the genetic material Oswald Avery Colin MacLeod Maclyn

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ CH 12 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many codons are needed to specify three amino acids? a. 6 c. 3 b. 12

More information

BIOCHEMISTRY Nucleic Acids

BIOCHEMISTRY Nucleic Acids BIOCHEMISTRY Nucleic Acids BIOB111 CHEMISTRY & BIOCHEMISTRY Session 17 Session Plan Types of Nucleic Acids Nucleosides Nucleotides Primary Structure of Nucleic Acids DNA Double Helix DNA Replication Types

More information

The common structure of a DNA nucleotide. Hewitt

The common structure of a DNA nucleotide. Hewitt GENETICS Unless otherwise noted* the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial, non-profit educational purposes provided

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 History of DNA Late 1800 s scientists discovered that DNA is in the nucleus of the cell 1902 Walter Sutton proposed that hereditary material resided in the chromosomes in the nucleus

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes.

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. DNA replication Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. Figure 10.8 http://www.hhmi.org/biointeractive/media/ DNAi_replication_schematic-lg.mov

More information

Pre-Lab: Molecular Biology

Pre-Lab: Molecular Biology Pre-Lab: Molecular Biology Name 1. What are the three chemical parts of a nucleotide. Draw a simple sketch to show how the three parts are arranged. 2. What are the rules of base pairing? 3. In double

More information

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering DNA Introduction Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering At the most basic level DNA is a set of instructions for protein construction. Structural

More information

Gene Expression Transcription/Translation Protein Synthesis

Gene Expression Transcription/Translation Protein Synthesis Gene Expression Transcription/Translation Protein Synthesis 1. Describe how genetic information is transcribed into sequences of bases in RNA molecules and is finally translated into sequences of amino

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

PROTEIN SYNTHESIS. copyright cmassengale

PROTEIN SYNTHESIS. copyright cmassengale PROTEIN SYNTHESIS 1 DNA and Genes 2 Roles of RNA and DNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 3 RNA Differs from DNA RNA has a sugar ribose DNA has a sugar deoxyribose 4 Other

More information

Primer on Genome Biology Part I: Fundamentals

Primer on Genome Biology Part I: Fundamentals Primer on Genome Biology Part I: Fundamentals PB HLTH C240F/STAT C245F Division of Biostatistics and Department of Statistics University of California, Berkeley www.stat.berkeley.edu/~sandrine Copyright

More information

Protein Synthesis. OpenStax College

Protein Synthesis. OpenStax College OpenStax-CNX module: m46032 1 Protein Synthesis OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

CHAPTER 14 Genetics and Propagation

CHAPTER 14 Genetics and Propagation CHAPTER 14 Genetics and Propagation BASIC GENETIC CONCEPTS IN PLANT SCIENCE The plants we cultivate for our survival and pleasure all originated from wild plants. However, most of our domesticated plants

More information

Genome Architecture Structural Subdivisons

Genome Architecture Structural Subdivisons Lecture 4 Hierarchical Organization of the Genome by John R. Finnerty Genome Architecture Structural Subdivisons 1. Nucleotide : monomer building block of DNA 2. DNA : polymer string of nucleotides 3.

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

Chapter 8 The Cellular Basics of Reproduction and Inheritance

Chapter 8 The Cellular Basics of Reproduction and Inheritance Chapter 8 The Cellular Basics of Reproduction and Inheritance A. Cell Reproduction 1. (Mitosis) Cell reproduction is responsible for growth, the replacement of lost or damaged cells, the reproduction of

More information

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

EOC Review Reporting Category 2 Mechanisms of Genetics

EOC Review Reporting Category 2 Mechanisms of Genetics EOC Review Reporting Category 2 Mechanisms of Genetics The student will demonstrate an understanding of the mechanisms of genetics. Langham Creek High School 2012-2013 By PresenterMedia.com TEK 6A Identify

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 Warm Up Exercise Test Corrections Make sure to indicate your new answer and provide an explanation for why this is the correct answer. Do this with a red pen in the margins of your

More information