Thermal Management and Packaging Challenges of High Power Devices

Size: px
Start display at page:

Download "Thermal Management and Packaging Challenges of High Power Devices"

Transcription

1 Volume 1 Issue 4 MAY 2007 The newsletter for the thermal management of electronics 1 In this issue: Future Cooling FUTURE COOLING Thermal Management and Packaging Challenges of High Power Devices Thermal Minutes Thermal Analysis Thermal Fundamentals Cooling News Market requirements for higher frequency signal processing, and limits on the passage of electrons through metallic media, have forced the electronics industry to use smaller packages. But, the higher frequencies have created a unique power dissipation that exceeds standard packaging options on the market. This combination of power dissipation and small packaging is creating heat fluxes that are beyond today s conventional cooling technologies. Engineers face the dilemma of cooling these high power devices at either the package or the system level. The following explores these power and packaging challenges, and highlights the issues confronting designers in choosing or developing successful solutions. First, let s look at the issue of power and frequency. Device power dissipation as a function of frequency and number of gates is shown below: 5 million gate device operating at 200 MHz. Table 1. Device total power dissipation for a clock frequency of 200MHz and gate power switching requirement of 0.15 µw/ng/mhz [1]. Gate switching power Frequency 0.15 µw/ng/mhz 200 MHz No. Gates (NG) 5x10 6 Device Total Power 150W The direct implication of frequency is clearly demonstrated in the commonly used broadband applications that we see in the marketplace today, Table 2. Table 2. Power requirement per line for narrow and broadband communication technologies [2]. 16 Who We Are Power Dissipation (W) ~ SwitchingPower(µW/NG/MHz) X No. Gates X Frequency (MHz) Communication Technology Average Power Per Line Narrowband 0.5W 1W Peak Power Per Line Table 1 shows the impact of frequency on a Broadband 5W 10W Copyright Advanced Thermal Solutions, inc Access Road Norwood, MA usa T: Page 1

2 To deliver higher frequency and consequently higher power devices, thermal management becomes a challenging gating factor and an important role in thermal performance of the system. To effectively design or select a cooling system, one needs to consider the heat flow path from the source to the sink. Figure 1 shows the path of heat flow: Internal module Interfacial and spreading External These challenges are: 1. Achieving and maintaining the chip-to-cap gaps due to the close proximity, noncoplanarity and tilts of the multiple chips. 2. Chip and capacitor re-work. 3. Sealing the MCM to prevent dry-out of the thermal paste and corrosion of the C4s (Controlled Collapse Chip Connections). 4. Maintaining the package s mechanical integrity during the assembly process and operating life. Heat Source Chip Package Interface Contacts Cooling System Environment Figure 2a shows the MCM chip carrier, and Figure 2b shows the copper cap, where a special thermal paste was designed to fill the gap and provide a heat transfer path to the exterior of the package (see Figure 3). Cooling System Figure 1. Thermal transport from the sink to the source [2]. In this process, the environment is the ultimate sink into which the generated heat is eventually discharged. This environment can be the surrounding air or a water reservoir. To successfully design or select a cooling solution, the cooling system box embracing the chip package, interfacial contacts, spreading resistance and the cooling device (e.g., heat sink) needs to be carefully considered. In addition to the increasing heat fluxes, packaging issues pose a major challenge. Take, for example, the integration of a small die in a larger package. To accommodate the thermal management, thermal spreaders are often used to cap the die, resulting in contact and spreading resistances that can become the negating factors. Sikka, et. al. highlight the thermal and mechanical challenges of a multi-chip module (MCM) used in a high-end system [3]. Figures 2a and 2b. Chip and thermal paste carrier for IBM MCM package [3]. Copyright Advanced Thermal Solutions, inc Access Road Norwood, MA usa T: Page 2

3 Solder SGT Piston ATC Chip Carrier Copper Hat Shims C-Ring Cushion Base Plate considered a perfect contact at different interfaces, resulting in a dramatic 15 o C temperature reduction. But once contact resistance and the TEC s electrical performance were taken into account, the improvements were on the order of a few degrees. The authors correctly conclude that the the thermal contact resistance plays a dominant mitigating role. Microchannel cold plate Figure 3. Cross section schematic of MCM [3]. TFTEC Micro/Nano particle laden TIM Figure 4 shows the application of the specially designed, thermally conductive compound. The material is applied using a screen template, due to the challenges described above. Figure 4. Application of a thermally conductive compound on the MCM [3]. Figure 4 shows the design details required to properly apply and implement thermal interface materials, ensuring that the heat from the dies is carried to the exterior of the package. Any voids or additional contact resistances that may occur with the use of these compounds will thermally jeopardize the device. To minimize the junction temperature of a high power device, an interesting concept by Yavatkar and Tirumala using a Thin Film Thermo Electric Cooler (TFTEC) has been proposed [4] (see Figure 5). In this case, the TFTEC is embedded on the backside of the die, and a microchannel cold plate is used for the thermal transport. Their initial study Figure 5. A futuristic microprocessor package using microchannels and an embedded thermoelectric device [4]. Considering the small die size and the high power dissipation, spreading resistance will play a pivotal role in the choice of the package type and the cooling system. In such devices, spreading resistance is often the largest resistor on the path of heat transfer. Its minimization results in successful thermal design. Spreading resistance occurs because of unequal contact area between the heat source and the sink. The magnitude of spreading resistance is a function of several parameters, including: Source area, A s, the smaller the area, the higher the R spreading Conductivity of the base plate, k: Higher k means lower R (almost R ~1/k, i.e., by choosing Al, Cu, diamond, heat pipe, or a vapor chamber) Area ratio (A source /A heat sink ) : If this ratio approaches 1, the spreading resistance drops to 0 Heat convection coefficient above the base plate, higher h means lower R Copyright Advanced Thermal Solutions, inc Access Road Norwood, MA usa T: Page 3

4 The thickness of base plate, t b, the higher the t b, the lower the R (not a strong relation) Figure 6 shows the impact of source size on spreading resistance for an 80 x 80 x 5 mm copper plate. Figure 7 shows the effect of conductivity for a 10 x 10 mm source size and an 80 x 80 x 5 mm plate. for a given application. An innovative concept from Advanced Thermal Solutions minimizes spreading resistance by using a Forced Thermal Spreader (FTS) in a package [6]. Figure 8 shows the schematic design of such a package. Thermal spreading resistance ( o C/W) L heat source /L baseplate =1/8 Baseplate : 5mm thick solid copper FORCED HEAT SPREADER ACTIVE BGA PACKAGING FAN DIE HEAT SINK Side length of heat source (mm) Figure 6. Effect of source planar area on spreading resistance. Thermal spreading resistance ( o C/W) Aluminum Heat source: 1cm X 1cm Baseplate: 8cm X 8 cm X 5 mm Copper Diamond Thermal conductivity (W/mK) Figure 7. Effect of heat sink material on spreading resistance. Figure 8. A BGA package with forced thermal spreader, Active BGA (patent pending, Advanced Thermal Solutions, Inc.) [5]. The Forced Thermal Spreader distributes the concentrated heat of the small die to the larger base area of the heat sink. The heat sink then transfers the heat to the ambient. The built-in FTS combines microchannels and minichannels in the silicon package. The water flow rate inside the channels is approximately 0.5~1.0 L/min, and the FTS is directly bonded to the die. Simulation results for this novel packaging are shown in Table 3. Columns one, two and three depict the planar area of the heat sink, the total and the conductive resistance for a heat sink made of a material with thermal conductivity equal to or higher than diamond. The die size for this study was 10 x10 mm. As can be seen from the examples in Figures 6 and 7, substantial reduction in spreading resistance can be attained if the parameters described above are optimized Copyright Advanced Thermal Solutions, inc Access Road Norwood, MA usa T: Page 4

5 Table 3. Thermal performance of the Active BGA cooling system with a die size of 10 x 10 mm [5]. Heat sink baseplate area (mm) 80X80 100X X120 Total thermal resistance (K/W) Solid material conductive (K/W) (k 2000 W/mk) Along with optimizing the spreading resistance, thermal transport needs to be managed, in order to dissipate the high heat fluxes in today s electronics. One such an example is provided by Colgan, et. al., [6]. In their application, the chip needed to operate at 400 W/cm 2. Microchannels were fabricated inside the package, in order to provide the required cooling for operating this chip. Figure 9 shows the schematic of this package, and Figures 10a and 10b show the cross-section and the sub-assemblies required to put the package together. Figure 9. 3-D rendering of the assembled microchannel cooler [6]. 10a Figure 10 a & b. Schematic cross-section of the microchannel cooler integrated in a single chip module, and components for the microchannel SCM assembly [6]. Colgan, et. al. report that the attained heat flux for the desired junction temperature exceeded 400 W/cm 2. The flow rate was 1.2 L/min, and the pressure drop was 30 kpa. Industry trends clearly point to increased power dissipation in modern electronic devices. High power devices - those with heat fluxes exceeding 250 W/cm 2 - pose unique thermal and mechanical packaging issues. The topics and research presented here show that contact and spreading resistances are the mitigating factors for successful design. The work of many researchers shows that successful implementation of high power devices requires a departure from standard packaging. Use of silicon embedded with microchannels, Forced Thermal Spreaders, or other packaging concepts is a departure from the norm that requires rethinking of the entire system architecture. To move these packages from specialty to mainstream electronics will require fundamental restructuring of coolant delivery systems, cooling system reliability and thermal management budgets. References: 1. Azar, K., Advanced cooling concepts and their challenges, Therminic Conference, Azar, K., Electronics Thermal management - Cooling today s and tomorrow s packages and systems, LTDF, Sikka, K, et.al., Multi-chip package thermal management of IBM z-server systems, ITHERM, Yavatkar, R., and Tirumala, M., Platform wide innovations to overcome thermal challenges, THERMES, Forced thermal spreader characterization for an active_bga, Internal memorandum, R&D Department, Advanced Thermal Solutions, Inc., Colgan, E., et. al., A practical implementation of silicon microchannel coolers for high power chips, SEMITHERM, Copyright Advanced Thermal Solutions, inc Access Road Norwood, MA usa T: Page 5 10b

Closed Loop Liquid Cooling for High Power Electronics

Closed Loop Liquid Cooling for High Power Electronics Volume 1 Issue 9 October 2007 The newsletter for the thermal management of electronics 1 In this issue: Future Cooling FUTURE COOLING Closed Loop Liquid Cooling for High Power Electronics 6 Thermal Minutes

More information

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste SEMIKRON Pty Ltd 8/8 Garden Rd Clayton Melbourne 3168 VIC Australia Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste For some years now, the elimination of bond

More information

Trends and Challenges in the Thermal Management Field

Trends and Challenges in the Thermal Management Field Trends and Challenges in the Thermal Management Field Challenges in thermal management are not new and they are not going to be going away anytime soon. Patent search shows patents addressing thermal issues

More information

Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption

Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption Thermal Performance of Thermoelectric Cooler () Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption Masami Ikeda, Toshiaki Nakamura, Yuichi Kimura, Hajime Noda The

More information

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight Aluminum Silicon Carbide (AlSiC) Microprocessor Lids and Heat Sinks for Integrated Thermal Management Solutions Mark A. Occhionero, Robert A. Hay, Richard W. Adams, Kevin P. Fennessy, and Glenn Sundberg

More information

Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor

Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor Bhavani P. Dewan-Sandur, Abhijit Kaisare and Dereje Agonafer The University of Texas at Arlington, Box 19018, TX

More information

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14 Keeping Cool!: selecting high performance thermal materials for LED Lighting applications Ian Loader 25/03/14 1 Target Points to cover Basics of Thermal Management Considerations for thermal materials

More information

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C EPRC 12 Project Proposal Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C 15 th August 2012 Page 1 Motivation Increased requirements of high power semiconductor device

More information

Advanced Materials for Thermal Management of Electronic Packaging

Advanced Materials for Thermal Management of Electronic Packaging Xingcun Colin Tong Advanced Materials for Thermal Management of Electronic Packaging Sprin ger Contents 1 Thermal Management Fundamentals and Design Guides in Electronic Packaging 1 Rationale of Thermal

More information

OpenVPX Chassis Thermal Management: Dangerous Myths and Analytical Tools

OpenVPX Chassis Thermal Management: Dangerous Myths and Analytical Tools OpenVPX Chassis Thermal Management: Dangerous Myths and Analytical Tools www.atrenne.com sales@atrenne.com 508.588.6110 800.926.8722 Read About Thermal Management OpenVPX Chassis Cooling Methods Heat Transfer

More information

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Challenges and Solutions for Cost Effective Next Generation Advanced Packaging H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Outline Next Generation Package Requirements ewlb (Fan-Out Wafer

More information

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS Novel Material for Improved Quality of RF-PA in Base-Station Applications Co-Authored by Nokia Research Center and Freescale Semiconductor Presented at 10 th International Workshop on THERMal INvestigations

More information

Embedded Cooling Solutions for 3D Packaging

Embedded Cooling Solutions for 3D Packaging IME roprietary ERC 12 roject roposal Embedded Cooling Solutions for 3D ackaging 15 th August 2012 age 1 Technology & ower Dissipation Trends IME roprietary Cannot continue based on Moore s law scaling

More information

ABSTRACT. Professor, F. Patrick McCluskey, Department of Mechanical Engineering

ABSTRACT. Professor, F. Patrick McCluskey, Department of Mechanical Engineering ABSTRACT Title of Document: STRUCTURAL RELIABILITY OF NOVEL 3-D INTEGRATED THERMAL PACKAGING FOR POWER ELECTRONICS. Sumeer Khanna, M.S., 2015 Directed By: Professor, F. Patrick McCluskey, Department of

More information

AND TESTING OF A CARBON FOAM BASED SUPERCOOLER FOR HIGH HEAT FLUX COOLING IN OPTOELECTRONIC PACKAGES

AND TESTING OF A CARBON FOAM BASED SUPERCOOLER FOR HIGH HEAT FLUX COOLING IN OPTOELECTRONIC PACKAGES Proceedings of the ASME 2009 ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA InterPACK2009-89008 IPACK2009-89008 DESIGN AND TESTING OF A CARBON FOAM BASED SUPERCOOLER

More information

FRENIC4800VM5, a Water-Cooled High Capacity, High Voltage Inverter

FRENIC4800VM5, a Water-Cooled High Capacity, High Voltage Inverter FRENIC4800VM5, a Water-Cooled Capacity, Voltage Inverter MOKUTANI Masafumi HANAZAWA Masahiko ADACHI Akio ABSTRACT -voltage inverters used to drive main rolling mills for steel and non-ferrous metal materials,

More information

Liquid cooling facilitates tomorrow s embedded systems

Liquid cooling facilitates tomorrow s embedded systems Hardware: ABCs of Cooling/Chassis Liquid cooling facilitates tomorrow s embedded systems Modern embedded systems are extremely dense electronic assemblies that produce self-damaging amounts of waste heat.

More information

Mil/Aero Thermal Management

Mil/Aero Thermal Management GE Intelligent Platforms Mil/Aero Thermal Management Providing the most capable rugged COTS products for demanding environments Current Trends for Military Computing The latest generation of processors,

More information

PCB Technologies for LED Applications Application note

PCB Technologies for LED Applications Application note PCB Technologies for LED Applications Application note Abstract This application note provides a general survey of the various available Printed Circuit Board (PCB) technologies for use in LED applications.

More information

Basic Properties and Application Examples of

Basic Properties and Application Examples of Basic Properties and Application Examples of 1. Basic properties of PGS 2. Functions of PGS 3. Application Examples Presentation [Sales Liaison] Panasonic Electronic Devices Co., Ltd. Capacitor Business

More information

Reliability Assessment of Hydrofoil-Shaped Micro-Pin Fins

Reliability Assessment of Hydrofoil-Shaped Micro-Pin Fins Reliability Assessment of Hydrofoil-Shaped Micro-Pin Fins 1 David C. Woodrum, 2 Xuchen Zhang, 1 Peter A. Kottke, 1 Yogendra K. Joshi, 1 Andrei G. Fedorov, 2 Muhannad S. Bakir, and 1 Suresh K. Sitaraman

More information

Silicon Interposer with Embedded Microfluidic Cooling for High-Performance Computing Systems

Silicon Interposer with Embedded Microfluidic Cooling for High-Performance Computing Systems Silicon Interposer with Embedded Microfluidic Cooling for High-Performance Computing Systems Li Zheng 1, Yang Zhang, Xuchen Zhang and Muhannad S. Bakir 2 School of Electrical and Computer Engineering Georgia

More information

Advanced Power Module Packaging for increased Operation Temperature and Power Density

Advanced Power Module Packaging for increased Operation Temperature and Power Density 15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia Advanced Power Module Packaging for increased Operation Temperature and Power Density Peter

More information

Jacques Matteau. NanoBond Assembly: A Rapid, Room Temperature Soldering Process. Global Sales Manager. indium.us/f018

Jacques Matteau. NanoBond Assembly: A Rapid, Room Temperature Soldering Process. Global Sales Manager. indium.us/f018 Jacques Matteau Global Sales Manager NanoBond Assembly: A Rapid, Room Temperature Soldering Process jmatteau@indium.com indium.us/f014 indium.us/f018 Terminology A few key terms NanoFoil is the heat source

More information

Making the most out of SiC. Alexander Streibel, Application Engineer

Making the most out of SiC. Alexander Streibel, Application Engineer Making the most out of SiC Alexander Streibel, Application Engineer WBG Power Conference December 5 th, Munich 2017 Content 1 Introduction to Danfoss Silicon Power 2 3 Danfoss Technologies DSP Activities

More information

Direct Liquid Cooling IGBT Module for Automotive Applications

Direct Liquid Cooling IGBT Module for Automotive Applications Direct Liquid Cooling IGBT Module for Automotive Applications Takahisa Hitachi Hiromichi Gohara Fumio Nagaune ABSTRACT A compact insulated gate bipolar transistor (IGBT) module with low thermal resistance

More information

The Secret Behind Wide Temperature Technology

The Secret Behind Wide Temperature Technology Abel Lee, Assistant Manager, Hardware R&D Hunter Lin, Project Supervisor, Thermal Department Bruce Chen, Project Supervisor, Marketing Communications support@moxa.com Industrial applications are often

More information

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Thermal Symposium August 9-10 2017 Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Mark Breloff Technical Sales Manager 1 Electronics power requirements

More information

3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014

3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014 3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014 1 1 Outline Background Information Technology Development Trend Technical Challenges ASTRI s Solutions Concluding Remarks

More information

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD Channamallikarjun Department of Mechanical Engineering, BKIT-Bhalki-585328 Abstract The computational fluid dynamics is concentrated

More information

HEAT SPREADERS. Heat Spreaders. and C-Wing

HEAT SPREADERS. Heat Spreaders. and C-Wing T-Wing TM and C-Wing Chomerics family of thin heat spreaders provides a low-cost, effective means of cooling IC devices in restricted spaces where conventional heat sinks aren t appropriate. T-Wing spreaders

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

EMBEDDED ACTIVE AND PASSIVE METHODS TO REDUCE THE JUNCTION TEMPERATURE OF POWER AND RF ELECTRONICS

EMBEDDED ACTIVE AND PASSIVE METHODS TO REDUCE THE JUNCTION TEMPERATURE OF POWER AND RF ELECTRONICS EMBEDDED ACTIVE AND PASSIVE METHODS TO REDUCE THE JUNCTION TEMPERATURE OF POWER AND RF ELECTRONICS A Thesis Presented to The Academic Faculty by Xiuping (Yvette) Chen In Partial Fulfillment of the Requirements

More information

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society SLID bonding for thermal interfaces Thermal performance Outline Background and motivation The HTPEP project Solid-Liquid Inter-Diffusion (SLID) Au-Sn SLID Cu-Sn SLID Reliability and bond integrity Alternative

More information

Liquid Metal Heat Sink for High-Power Laser Diodes a,b

Liquid Metal Heat Sink for High-Power Laser Diodes a,b Liquid Metal Heat Sink for High-Power Laser Diodes a,b John Vetrovec c, Amardeep S. Litt, and Drew A. Copeland Aqwest LLC Larkspur, CO, USA Jeremy Junghans and Roger Durkey Northrop-Grumman Cutting Edge

More information

AN OVERVIEW OF ADVANCED ELECTRONICS COOLING Emphasis on Liquid Metals Solutions

AN OVERVIEW OF ADVANCED ELECTRONICS COOLING Emphasis on Liquid Metals Solutions AN OVERVIEW OF ADVANCED ELECTRONICS COOLING Emphasis on Liquid Metals Solutions A. POPESCU 1 E.C. PANAITE 1 Abstract: The paper presents the problems faced by the electronics industry due to increased

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

Enhancing the Performance & Reliability of Your Electronics Designs. Innovative Thermally Conductive Silicone Solutions IMAGINE

Enhancing the Performance & Reliability of Your Electronics Designs. Innovative Thermally Conductive Silicone Solutions IMAGINE Enhancing the Performance & Reliability of Your Electronics Designs Innovative Thermally Conductive Silicone Solutions IMAGINE Heat Is the Enemy of Electronic Devices The reasons why may vary from application

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

ADVANCED ENERGY TECHNOLOGY INC. Electronic Thermal Management

ADVANCED ENERGY TECHNOLOGY INC. Electronic Thermal Management TECHNICOME.COM www.technicome.com ZA de Pissaloup - Rue Édouard Branly BP 102-78191 TrappesCedex - France Tél: (0)1 30 69 15 00 - Fax : (0)1 30 69 15 01 ADVANCED ENERGY TECHNOLOGY INC. Electronic Thermal

More information

CO.,LTD.,314,Maetan3-Dong,Yeongtong-Gu,Suwon,Gyunggi-Do,Korea,

CO.,LTD.,314,Maetan3-Dong,Yeongtong-Gu,Suwon,Gyunggi-Do,Korea, Key Engineering Materials Vols. 326-328 (2006) pp 309-32 Online: 2006-2-0 (2006) Trans Tech Publications, Switzerland doi:0.4028/www.scientific.net/kem.326-328.309 MEMS based metal plated silicon package

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory PCTB Power Cycling Testbench for Power Electronic Modules PC-LAB Power Cycling Test Laboratory Technical Information PCTB power cycling test bench alpitronic has many years of experience in developing

More information

Applicability of Minichannel Cooling Fins to the Next Generation Power Devices as a Single-Phase-Flow Heat Transfer Device

Applicability of Minichannel Cooling Fins to the Next Generation Power Devices as a Single-Phase-Flow Heat Transfer Device [Technical Paper] Applicability of Minichannel Cooling Fins to the Next Generation Power Devices as a Single-Phase-Flow Heat Transfer Device Kazuhisa Yuki and Koichi Suzuki Department of Mechanical Engineering,

More information

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY B. Rogers, C. Scanlan, and T. Olson Deca Technologies, Inc. Tempe, AZ USA boyd.rogers@decatechnologies.com ABSTRACT Fan-Out Wafer-Level Packaging

More information

Thermoelectric Microcoolers for Thermal Management Applications

Thermoelectric Microcoolers for Thermal Management Applications Thermoelectric Microcoolers for Thermal Management Applications J.-P. Fleurial, A. Borshchevsky, M.A. Ryan, W. Phillips, E. Kolawa, T. Kacisch and R. Ewell Jet Propulsion Laboratory/California Institute

More information

Performance of water and diluted ethylene glycol as coolants for electronic cooling

Performance of water and diluted ethylene glycol as coolants for electronic cooling M. Gayatri Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Performance of and diluted ethylene glycol as coolants for electronic cooling M. Gayatri, Dr.D.Sreeramulu M.E(Thermal

More information

General Information on the Assembly and Solder Pad Design of the DRAGON Family Application Note

General Information on the Assembly and Solder Pad Design of the DRAGON Family Application Note General Information on the Assembly and Solder Pad Design of the DRAGON Family Application Note Abstract This application note gives general information on the assembly and design of the solder pad of

More information

Recent Trends of Package Warpage and Measurement Metrologies (inemi Warpage Characterization Project Phase 3)

Recent Trends of Package Warpage and Measurement Metrologies (inemi Warpage Characterization Project Phase 3) Recent Trends of Package Warpage and Measurement Metrologies (inemi Warpage Characterization Project Phase 3) Wei Keat Loh 1, Ron Kulterman 2, Haley Fu 3, Masahiro Tsuriya 3 1 Intel Technology Sdn. Bhd.

More information

LED Die Attach Selection Considerations

LED Die Attach Selection Considerations LED Die Attach Selection Considerations Gyan Dutt & Ravi Bhatkal Alpha, An Alent plc Company Abstract Die attach material plays a key role in performance and reliability of mid, high and super-high power

More information

CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID

CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID Bhavesh K. Patel 1, Ravi S. Engineer 2, Mehulkumar H. Tandel 3 1 Assistant Professor, Mechanical Engineering, Government Engineering

More information

Smart Integration of Thermal Management Systems for Electronics Cooling

Smart Integration of Thermal Management Systems for Electronics Cooling Smart Integration of Thermal Management Systems for Electronics Cooling Dr. Ir. Wessel W. Wits, University of Twente, Faculty of Engineering Technology, Laboratory of Design, Production and Management,

More information

Nondestructive Internal Inspection. The World s Leading Acoustic Micro Imaging Lab

Nondestructive Internal Inspection. The World s Leading Acoustic Micro Imaging Lab Nondestructive Internal Inspection The World s Leading Acoustic Micro Imaging Lab Unmatched Capabilities and Extensive Expertise At Your Service SonoLab, a division of Sonoscan, is the world s largest

More information

Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick

Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick IMAPS NE May 2015 Overview Our focus is a material to more effectively dissipate heat TIMs Chip Substrate Heat Sink Heat

More information

THERMAL CONTROL OF ELECTRONICS: PERSPECTIVES AND PROSPECTS

THERMAL CONTROL OF ELECTRONICS: PERSPECTIVES AND PROSPECTS THERMAL CONTROL OF ELECTRONICS: PERSPECTIVES AND PROSPECTS Dr. Robert Hannemann Charlespoint Group Boston, MA ABSTRACT One of the most prominent industrial applications of heat transfer science and engineering

More information

ELECTRONIC PACKAGING MATERIALS

ELECTRONIC PACKAGING MATERIALS ADVANCED ELECTRONIC PACKAGING MATERIALS Heat Revolutionary advances have recently been made in advanced monolithic and composite packaging materials for microelectronics and optoelectronics. Carl Zweben*

More information

BOOST HEAT DISSIPATION WITH A THERMAL PYROLYTIC GRAPHITE CORE Presentation at 12 th European ATW on Micropackaging and Thermal Management

BOOST HEAT DISSIPATION WITH A THERMAL PYROLYTIC GRAPHITE CORE Presentation at 12 th European ATW on Micropackaging and Thermal Management BOOST HEAT DISSIPATION WITH A THERMAL PYROLYTIC GRAPHITE CORE Presentation at 12 th European ATW on Micropackaging and Thermal Management Wei Fan, Ph.D., Xiang Liu, Ph.D., Creighton Tomek, Dawn Krencisz,

More information

Design Considerations for Cooling High Heat Flux IC Chips With Microchannels

Design Considerations for Cooling High Heat Flux IC Chips With Microchannels Design Considerations for Cooling High Heat Flux IC Chips With Microchannels Satish G. Kandlikar Rochester Institute of Technology Editor s notes: Thermal emergency in integrated circuits has become an

More information

A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics

A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics Thermal Management Challenges in HBLED Excess heat leads to a whole range of performance and reliability issues for high

More information

Development and Characterization of Large Silicon Microchannel Heat Sink Packages for Thermal Management of High Power Microelectronics Modules

Development and Characterization of Large Silicon Microchannel Heat Sink Packages for Thermal Management of High Power Microelectronics Modules Development and Characterization of Large Silicon Microchannel Heat Sink Packages for Thermal Management of High Power Microelectronics Modules Hengyun Zhang*, Qingxin Zhang*, Ser-Choong Chong*, Damaruganath

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

TSV CHIP STACKING MEETS PRODUCTIVITY

TSV CHIP STACKING MEETS PRODUCTIVITY TSV CHIP STACKING MEETS PRODUCTIVITY EUROPEAN 3D TSV SUMMIT 22-23.1.2013 GRENOBLE HANNES KOSTNER DIRECTOR R&D BESI AUSTRIA OVERVIEW Flip Chip Packaging Evolution The Simple World of C4 New Flip Chip Demands

More information

THERMAL CONDUCTIVITY TESTS OF LIQUIDS USING FOX50 HEAT FLOW METER INSTRUMENT (Amendment the FOX50 Instrument Manual)

THERMAL CONDUCTIVITY TESTS OF LIQUIDS USING FOX50 HEAT FLOW METER INSTRUMENT (Amendment the FOX50 Instrument Manual) LaserComp, Inc., 2001-2003 THERMAL CONDUCTIVITY TESTS OF LIQUIDS USING FOX50 HEAT FLOW METER INSTRUMENT (Amendment the FOX50 Instrument Manual) INTRODUCTION To measure thermal conductivity of liquids using

More information

Developing next generation solutions for heating, cooling & energy harvesting

Developing next generation solutions for heating, cooling & energy harvesting Developing next generation solutions for heating, cooling & energy harvesting Design to supply thermal consultancy High performance, market-leading products Industry leading research & development European

More information

Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology

Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology by Meenakshi Prashant, Seung Wook Yoon, Yaojian LIN and Pandi C. Marimuthu STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442

More information

Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values

Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values Specifically designed and formulated chemical products are widely used in the electronics industry for a vast array of applications.

More information

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 1 TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 12th European Advanced Technology Workshop on Micropackaging and Thermal management La Rochelle, France

More information

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Revision 0 2006 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the

More information

A Numerical Study on Comparing the Active and Passive Cooling of AlGaN/GaN HEMTs Xiuping Chen, Fatma Nazli Donmezer, Satish Kumar, and Samuel Graham

A Numerical Study on Comparing the Active and Passive Cooling of AlGaN/GaN HEMTs Xiuping Chen, Fatma Nazli Donmezer, Satish Kumar, and Samuel Graham 4056 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 12, DECEMBER 2014 A Numerical Study on Comparing the Active and Passive Cooling of AlGaN/GaN HEMTs Xiuping Chen, Fatma Nazli Donmezer, Satish Kumar,

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector 1 OBJECTIVE: Performance Study of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation INTRODUCTION: Solar water heater

More information

Kevin O. Loutfy and Dr. Hideki Hirotsuru

Kevin O. Loutfy and Dr. Hideki Hirotsuru Advanced Diamond based Metal Matrix Composites for Thermal Management of RF Devices By Kevin O. Loutfy and Dr. Hideki Hirotsuru Agenda - Thermal Management Packaging Flange Materials - GaN High Power Densities

More information

Sheet) Graphite Sheet

Sheet) Graphite Sheet PGS(Pyrolytic Graphite Sheet) Graphite Sheet Panasonic Electronic Device Co.,Ltd Panasonic Electronic Device Hokkaido Co.,Ltd PGS Graphite Sheet PGS (Pyrolytic Highly Oriented Graphite Sheet) is made of

More information

Simulation of Embedded Components in PCB Environment and Verification of Board Reliability

Simulation of Embedded Components in PCB Environment and Verification of Board Reliability Simulation of Embedded Components in PCB Environment and Verification of Board Reliability J. Stahr, M. Morianz AT&S Leoben, Austria M. Brizoux, A. Grivon, W. Maia Thales Global Services Meudon-la-Forêt,

More information

Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication

Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication Abstract Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication Dave Sommervold, Chris Parker, Steve Taylor, Garry Wexler. The Bergquist Company Prescott,

More information

Typical Properties. THERMATTACH Dielectric Thickness Thermal Material Strength Carrier Color inches (mm) Impedance Features/Typical Applications (Vac)

Typical Properties. THERMATTACH Dielectric Thickness Thermal Material Strength Carrier Color inches (mm) Impedance Features/Typical Applications (Vac) THERMATTACH Typical Applications bonding heat sinks to plastic packages (T410 and T411) bonding heat sinks to metal or ceramic packages (T404,T405 and T412) heat spreader to circuit board attachment (T413

More information

Technological EUDET ECAL Prototype. Marc Anduze CALICE Meeting KOBE 10/05/07

Technological EUDET ECAL Prototype. Marc Anduze CALICE Meeting KOBE 10/05/07 Mechanical lr&d for Technological EUDET ECAL Prototype Why this prototype? ECAL Prototype Next step after the physics prototype and before the module 0 To study full scale technological solutions which

More information

Characterization of Mixed Metals Swaged Heat Sinks for Concentrated Heat Source

Characterization of Mixed Metals Swaged Heat Sinks for Concentrated Heat Source Proceedings of InterPACK 03 : International Electronic Packaging Technical Conference and Exhibition July 6 11, 2003 - Maui, Hawaii, UA Paper Number: InterPack2003-35315 Characterization of Mixed Metals

More information

Design and Testing of a Graphite Foam-Based Supercooler for High-Heat-Flux Cooling in Optoelectronic Packages

Design and Testing of a Graphite Foam-Based Supercooler for High-Heat-Flux Cooling in Optoelectronic Packages Heat Transfer Engineering ISSN: 0145-7632 (Print) 1521-0537 (Online) Journal homepage: http://www.tandfonline.com/loi/uhte20 Design and Testing of a Graphite Foam-Based Supercooler for High-Heat-Flux Cooling

More information

1 Thin-film applications to microelectronic technology

1 Thin-film applications to microelectronic technology 1 Thin-film applications to microelectronic technology 1.1 Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies.

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

T3Ster. Thermal Transient Tester General Overview.

T3Ster. Thermal Transient Tester General Overview. T3Ster Thermal Transient Tester General Overview M e c h a n i c a l a n a l y s i s Safeguarding Against Temperature Related Performance Problems The relationship between high temperature and poor performance

More information

Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes e Scientific World Journal, Article ID 563805, 7 pages http://dx.doi.org/10.1155/14/563805 Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip

More information

Study on Water-Cooled Solar Semiconductor Air Conditioner

Study on Water-Cooled Solar Semiconductor Air Conditioner Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 2015, 9, 135-140 135 Study on Water-Cooled Solar Semiconductor Air Conditioner Open Access Dong

More information

A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS SENSING

A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS SENSING INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 2, JUNE 2008 A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS

More information

Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe

Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe Abstract Heat pipe is an essentially passive heat transfer device having high thermal conductivity. In hydraulic power pack use of

More information

THERM-A-GAPTMInterface Materials Highly Conformable,Thermally Conductive Gap Fillers

THERM-A-GAPTMInterface Materials Highly Conformable,Thermally Conductive Gap Fillers Phase-change thermal interface materials Thermally conductive gap fillers Thermally conductive insulator pads Thermally conductive adhesive tapes Thermally conductive silicone compounds Flexible heat spreaders

More information

Burn-in & Test Socket Workshop

Burn-in & Test Socket Workshop Burn-in & Test Socket Workshop IEEE March 3-6, 2002 Hilton Phoenix East/Mesa Hotel Mesa, Arizona IEEE COMPUTER SOCIETY Sponsored By The IEEE Computer Society Test Technology Technical Council COPYRIGHT

More information

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT Ceramic Microchannel Devices for Thermal Management C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT The Right Size for The Right Physics centi milli micro 2 Multiscale Structure

More information

A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION

A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION YINCAE Advanced Materials, LLC WHITE PAPER November 2013 2014 YINCAE Advanced Materials, LLC - All Rights Reserved. YINCAE and the YINCAE

More information

Burn-in & Test Socket Workshop

Burn-in & Test Socket Workshop Burn-in & Test Socket Workshop March 2-5, 2003 Hilton Phoenix East / Mesa Hotel Mesa, Arizona Sponsored By The IEEE Computer Society Test Technology Technical Council tttc COPYRIGHT NOTICE The papers in

More information

3 Thermally Conductive Tapes

3 Thermally Conductive Tapes 3 Thermally Conductive Tapes Technical Data July, 21 Product Description 3M Thermally Conductive Tapes 885, 881, and 8815 are designed to provide a preferential heat-transfer path between heat-generating

More information

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and

More information

Integration, cooling and packaging issues for aerospace equipments

Integration, cooling and packaging issues for aerospace equipments Integration, cooling and packaging issues for aerospace equipments C. Sarno, C. Tantolin Packaging Department, TBU Navigation Thales, Aerospace Division Valence, France claude.sarno@fr.thalesgroup.com

More information

Thermal Management Catalog

Thermal Management Catalog Management Catalog P-THERM Interface Materials Polymer Science, Inc. offers a complete thermal management product line. Our P-THERM Interface Materials are designed to efficiently and effectively aid in

More information

Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology

Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology Davide Chiola, Stephen Oliver, Marco Soldano International Rectifier, El Segundo, USA. As presented at

More information

Packaging Technologies for SiC Power Modules

Packaging Technologies for SiC Power Modules Packaging Technologies for SiC Power Modules Masafumi Horio Yuji Iizuka Yoshinari Ikeda ABSTRACT Wide bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN) are attracting attention

More information

Shrinking Data Center Size, Complexity, and Cost through Directed-Flow Liquid Immersion Cooling

Shrinking Data Center Size, Complexity, and Cost through Directed-Flow Liquid Immersion Cooling Shrinking Data Center Size, Complexity, and Cost through Directed-Flow Liquid Immersion Cooling Darwin Kauffman, CEO, LiquidCool Solutions Gary Testa, CEO, Engineered Fluids 1 T h e L i q u i d C o o l

More information

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong White Paper Quality and Reliability Challenges for Package on Package By Craig Hillman and Randy Kong Background Semiconductor technology advances have been fulfilling Moore s law for many decades. However,

More information

SynJet Augmented Cooling for Cloud Computing. Raghav Mahalingam

SynJet Augmented Cooling for Cloud Computing. Raghav Mahalingam SynJet Augmented Cooling for Cloud Computing Raghav Mahalingam The Evolution of Computing Cloud computers Client computers Computing systems are moving in two opposing directions Cloud computing that handles

More information