Principles of Sequencing and Pla3orms

Size: px
Start display at page:

Download "Principles of Sequencing and Pla3orms"

Transcription

1 Principles of Sequencing and Pla3orms 6/4/2018 RCPA Workshop Ms Leah Roberts PhD candidate University of Queensland

2 TradiMonal diagnosmcs Standardised, established methods and infrastructure, reasonably fast turn- around Mme Relies on phenotype Lacks high- resolumon discriminatory power

3 Whole genome sequencing high resolumon diagnosmcs for microbiology Ability to discriminate at the nucleomde level Allows for the highest comparamve resolumon Whole genome characterisamon Plasmids AnMbioMc resistance genes (and their context) Virulence genes Becoming more applicable for the clinic Technology becoming faster, more accessible and more cost effecmve

4 Importance of genomics in the superbug era Epidemiological surveillance Outbreak inves6ga6on

5 Major landmarks in DNA sequencing 1 st GeneraMon 2 nd GeneraMon 3 rd GeneraMon DNA Structure Discovery Sanger Sequencing 454 Solexa PacBio Nanopore MinION SOLiD Illumina Illumina HiseqX Ion Torrent

6

7 ExponenMal growth of sequencing data hdps://doi.org/ / (2013)

8

9 Principles of Sequencing First GeneraMon Sanger Sequencing Dideoxy chain- terminamon method Chain termina6on nucleo6de Normal nucleo6de Normal nucleomdes (dntps) Dideoxy chain terminamon nucleomdes (ddntps) Fluorescently labelled Polymerase Primer hdp:// method- gene- sequencing/

10 Principles of Sequencing First GeneraMon Sanger Sequencing Dideoxy chain- terminamon method GAGCA T ATGCGAGCTCGTACGTACGTAATATC GAGCATG ATGCGAGCTCGTACGTACGTAATATC GAGCATGC ATGCGAGCTCGTACGTACGTAATATC dntps: ATGC ddntps: ATGC Polymerase Primers GAGCATGCA ATGCGAGCTCGTACGTACGTAATATC

11 hdps://en.wikipedia.org/wiki/sanger_sequencing

12 Principles of Sequencing First GeneraMon Sanger Sequencing Dideoxy chain- terminamon method Sanger sequencing applicamons: 99.99% accuracy Small scale SMll used for validamon tesmng and small regions

13 Principles of Sequencing Second GeneraMon Illumina Next GeneraMon Sequencing High Throughput Sequencing Other pla3orms: Roche 454, Solexa, Ion Torrent, ABI/SOLiD (2015): Whole genome sequencing in clinical and public health microbiology. J. C. Kwong, N. McCallum, V. Sintchenko, and B. P. Howden (2016): The sequence of sequencers: The history of sequencing DNA. James M. Heather and Benjamin Chain (2017): Genera6ons of Sequencing Technologies: From First to Next Genera6on. Mehdi Kchouk, Jean- François Gibrat and Mourad Elloumi

14 Principles of Sequencing Second GeneraMon Illumina hdps:// markemng/documents/products/illumina_sequencing_introducmon.pdf

15 Illumina Bridge amplificamon 1. DNA hybridised to flow cell using adapters 2. Hybridised DNA bends over to form bridge 3. DNA polymerase creates a complementary strand 4. DNA is denatured Process is repeated unml millions of clonal clusters are created hdps://binf.snipcademy.com/lessons/ngs- techniques/bridge- pcr

16 Illumina sequencing by synthesis hdps:// generamon- sequencing/

17 Illumina sequencing by synthesis

18 Illumina sequencing by synthesis 1. All four nucleomdes are washed over flow cell 2. Fluorescence detected 3. Flow cell washed 4. Cycle repeated Number of cycles determines the length of the sequencing read: HiSeq 100 bp MiSeq 300 bp NextSeq 150 bp hdps:// markemng/documents/products/illumina_sequencing_introducmon.pdf

19 Illumina sequencing applicamons: Large- scale WGS projects 99.9% base accuracy (1 in 1000 probability of error) Cost effecmve (<$100 bacterial genome) Widely used Principles of Sequencing Second GeneraMon Illumina Wide range of analysis tools available hdps://sapac.illumina.com/science/educamon/sequencing- quality- scores.html

20 Principles of Sequencing Third GeneraMon Long- read sequencing Pacific Biosciences Single Molecule Real- Time (SMRT) sequencing Oxford Nanopore MinION

21 Library preparamon: SMRTbell template Third GeneraMon PacBio SMRT Library preparamon hdps://doi.org/ /s

22 Third GeneraMon PacBio SMRT Zero Mode Waveguide (ZMW) SMRT cell 1000 s of ZMWs Library loaded into SMRT cell using Magbeads Each ZMW has a single polymerase at the base hdps:// genomics.com/pacbio- smrt- sequencing.html hdp://dnatech.genomecenter.ucdavis.edu/pacbio- sequencing/

23 Third GeneraMon PacBio SMRT Sequencing DOI /nrg2626

24 Principles of Sequencing Third GeneraMon PacBio SMRT sequencing PacBio SMRT sequencing applicamons: Generate high- quality reference genomes using long- reads 85-89% base accuracy* With enough coverage, consensus accuracy exceeds Illumina >99.99% Some problems with homopolymers Expensive (~$2000 bacterial genome) Reliable and reproducible Can detect epigenemc modificamons: methylamon *hdps://doi.org/ /j.ygeno

25 Principles of Sequencing Third GeneraMon Nanopore MinION 1D sequencing by ligamon: Rapid sequencing: hdps://store.nanoporetech.com/

26 Nanopore = nano- scale hole Ionic current passes through nanopores and measures the changes in current Current change can be used to idenmfy that molecule Nanopore MinION flow cell hdp://biochemistri.es/post/ /of- nanopores- and- isoforms hdps://nanoporetech.com/how- it- works

27 Principles of Sequencing Third GeneraMon Nanopore MinION Nanopore MinION sequencing applicamons: Generate reference genomes using long- reads ~60-70% accuracy (2015) Consensus accuracy >97% Requires Illumina polishing for SNPs and Indels 1 Flow cell ~$1000 MulMplexing and repeat use opmons available Capacity for real- Mme analysis hdps://doi.org/ /j.bdq

28 Why is read size important? GeneraMng complete genomes Traversing repeat regions in genomes A Repeat 1 B Repeat 2 C Scenario 1: short read (Illumina) sequencing A B C Repeat 1 + 2

29 Why is read size important? GeneraMng complete genomes Traversing repeat regions in genomes A Repeat 1 B Repeat 2 C Scenario 2: long read (PacBio or Nanopore) sequencing Repeat 1 Repeat 2 A B C

30 Why is read size important? Scenario 1: short read sequencing Scenario 2: Long read sequencing Produce dra{ genomes Produce complete genomes Chromosome and plasmids hdps://github.com/rrwick/bandage/wiki/effect- of- kmer- size

31 Time and cost comparisons Cost per bacterial genome ~$100 ~$2000 ~$1000* *MulMplexing can reduce price per genome hdps://doi.org/ /ma17047

32 Sample requirements? Illumina: Flexible DNA requirements Low input kits available PacBio SMRT sequencing: Require ~20 ug of DNA ~6 x 5ml overnight broth cultures ~6 x agar plates Low input kits available Must be high molecular weight Aim for ~20-40 kb Must be high quality DNA Nanopore MinION: Requires 1.5ug DNA Low input kits available Ideal to be high molecular weight Can sequence directly from sample hdps:// content/uploads/2015/09/guide- Pacific- Biosciences- Template- PreparaMon- and- Sequencing.pdf

33 Summary of each pla3orm Illumina PacBio Nanopore Pros Cost effecmve, Reliable, widely- used, High quality, high throughput Reliable, widely- used, High quality, methylamon results, complete genomes Near- complete genomes, sequencing directly from samples, rapid results Cons Difficult to produce complete genomes Long turn- around Mme, expensive SMll in beta, variable results, more expensive than Illumina

34 Other logismcal problems to consider for the clinic Illumina NextSeq PacBio RSII Nanopore MinION

35 Looking to the future Illumina MiniSeq PacBio Sequel

36 PromethION SmidgION GridION Flongle

37 Acknowledgements Scod Beatson Mark Schembri Brian Forde Patrick Harris

Overview of Next Generation Sequencing technologies. Céline Keime

Overview of Next Generation Sequencing technologies. Céline Keime Overview of Next Generation Sequencing technologies Céline Keime keime@igbmc.fr Next Generation Sequencing < Second generation sequencing < General principle < Sequencing by synthesis - Illumina < Sequencing

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017 Next Generation Sequencing Jeroen Van Houdt - Leuven 13/10/2017 Landmarks in DNA sequencing 1953 Discovery of DNA double helix structure 1977 A Maxam and W Gilbert "DNA seq by chemical degradation" F Sanger"DNA

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015 High Throughput Sequencing Technologies UCD Genome Center Bioinformatics Core Monday 15 June 2015 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion 2011 PacBio

More information

Third Generation Sequencing

Third Generation Sequencing Third Generation Sequencing By Mohammad Hasan Samiee Aref Medical Genetics Laboratory of Dr. Zeinali History of DNA sequencing 1953 : Discovery of DNA structure by Watson and Crick 1973 : First sequence

More information

NGS technologies approaches, applications and challenges!

NGS technologies approaches, applications and challenges! www.supagro.fr NGS technologies approaches, applications and challenges! Jean-François Martin Centre de Biologie pour la Gestion des Populations Centre international d études supérieures en sciences agronomiques

More information

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016

DNA Sequencing. Happiness Kumburu BSU- workshop Nov, 2016 DNA Sequencing Happiness Kumburu BSU- workshop Nov, 2016 OUT LINE History of DNA sequencing Purpose of DNA sequencing DNA Sequencing Methods Advantages and Disadvantages References DNA SEQUENCING DNA sequencing-the

More information

Sequencing techniques

Sequencing techniques Sequencing techniques Workshop on Whole Genome Sequencing and Analysis, 2-4 Oct. 2017 Learning objective: After this lecture, you should be able to account for different techniques for whole genome sequencing

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

Next- gen sequencing. STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan

Next- gen sequencing. STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan Next- gen sequencing STAMPS 2015 Hilary G. Morrison Joe Vineis, Nora Downey, Be>e Hecox- Lea, Kim Finnegan QuesIons What is the difference between standard and next- gen sequencing? How is next- gen sequencing

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

Next Generation Sequencing Technologies

Next Generation Sequencing Technologies Next Generation Sequencing Technologies What is first generation? Sanger Sequencing DNA Polymerase Base-adding reaction +H + http://chemwiki.ucdavis.edu/organic_chemistry/organic_chemistry_with_a_biological_emphasis/chapter_10%3a_phosphoryl_transfer_reactions/section_10.4%3a_phosphate_diesters

More information

Research school methods seminar Genomics and Transcriptomics

Research school methods seminar Genomics and Transcriptomics Research school methods seminar Genomics and Transcriptomics Stephan Klee 19.11.2014 2 3 4 5 Genetics, Genomics what are we talking about? Genetics and Genomics Study of genes Role of genes in inheritence

More information

Next-generation sequencing Technology Overview

Next-generation sequencing Technology Overview Next-generation sequencing Technology Overview UQ Winter School 2018 Christopher Noune, PhD AGRF Melbourne christopher.noune@agrf.org.au What is NGS? Ion Torrent PGM (Thermo-Fisher) MiSeq (Illumina) High-Throughput

More information

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop

Aaron Liston, Oregon State University Botany 2012 Intro to Next Generation Sequencing Workshop Output (bp) Aaron Liston, Oregon State University Growth in Next-Gen Sequencing Capacity 3.5E+11 2002 2004 2006 2008 2010 3.0E+11 2.5E+11 2.0E+11 1.5E+11 1.0E+11 Adapted from Mardis, 2011, Nature 5.0E+10

More information

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun The Journey of DNA Sequencing H. Sunny Sun What is a genome? Genome is the total genetic complement of a living organism. The nuclear genome comprises approximately 3.2 * 10 9 nucleotides of DNA, divided

More information

Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute

Sequencing Theory. Brett E. Pickett, Ph.D. J. Craig Venter Institute Sequencing Theory Brett E. Pickett, Ph.D. J. Craig Venter Institute Applications of Genomics and Bioinformatics to Infectious Diseases GABRIEL Network Agenda Sequencing Instruments Sanger Illumina Ion

More information

Wheat CAP Gene Expression with RNA-Seq

Wheat CAP Gene Expression with RNA-Seq Wheat CAP Gene Expression with RNA-Seq July 9 th -13 th, 2018 Overview of the workshop, Alina Akhunova http://www.ksre.k-state.edu/igenomics/workshops/ RNA-Seq Workshop Activities Lectures Laboratory Molecular

More information

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter

NGS technologies: a user s guide. Karim Gharbi & Mark Blaxter NGS technologies: a user s guide Karim Gharbi & Mark Blaxter genepool-manager@ed.ac.uk Natural history of sequencing 2 Brief history of sequencing 100s bp throughput 100 Gb 1977 1986 1995 1999 2005 2007

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590 DNA Sequencing by Ion Torrent Marc Lavergne CHEM 4590 OVERVIEW History DNA Synthesis and First-Gen Sequencing Technology Sequencing Signal Detection Advantages/Disadvantages Applications Current Research

More information

Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento

Next generation sequencing techniques Toma Tebaldi Centre for Integrative Biology University of Trento Next generation sequencing techniques" Toma Tebaldi Centre for Integrative Biology University of Trento Mattarello September 28, 2009 Sequencing Fundamental task in modern biology read the information

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) Next Generation Sequencing (NGS) Fernando Alvarez Sección Biomatemática, Facultad de Ciencias, UdelaR 1 Uruguay Montevide o 3 TANGO World Champ 1930 1950 (Maraca 4 Next Generation Sequencing module Next

More information

Human genome sequence

Human genome sequence NGS: the basics Human genome sequence June 26th 2000: official announcement of the completion of the draft of the human genome sequence (truly finished in 2004) Francis Collins Craig Venter HGP: 3 billion

More information

NextGen Sequencing Technologies Sequencing overview

NextGen Sequencing Technologies Sequencing overview Outline Conventional NextGen High-throughput sequencing (Next-Gen sequencing) technologies. Illumina sequencing in detail. Quality control. Sequence coverage. Multiplexing. FASTQ files. Shendure and Ji

More information

Introduction to Next Generation Sequencing (NGS)

Introduction to Next Generation Sequencing (NGS) Introduction to Next eneration Sequencing (NS) Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark 2012 Today 9.00-9.45: Introduction to NS, How it

More information

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie Sander van Boheemen Medical Microbiology Next-generation sequencing Next-generation sequencing (NGS), also known as

More information

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies

Outline General NGS background and terms 11/14/2016 CONFLICT OF INTEREST. HLA region targeted enrichment. NGS library preparation methodologies Eric T. Weimer, PhD, D(ABMLI) Assistant Professor, Pathology & Laboratory Medicine, UNC School of Medicine Director, Molecular Immunology Associate Director, Clinical Flow Cytometry, HLA, and Immunology

More information

Genome Resequencing. Rearrangements. SNPs, Indels CNVs. De novo genome Sequencing. Metagenomics. Exome Sequencing. RNA-seq Gene Expression

Genome Resequencing. Rearrangements. SNPs, Indels CNVs. De novo genome Sequencing. Metagenomics. Exome Sequencing. RNA-seq Gene Expression Genome Resequencing De novo genome Sequencing SNPs, Indels CNVs Rearrangements Metagenomics RNA-seq Gene Expression Splice Isoform Abundance High Throughput Short Read Sequencing: Illumina Exome Sequencing

More information

2 nd Genera-on ( NextGen ) Sequencing Technologies

2 nd Genera-on ( NextGen ) Sequencing Technologies 2 nd Genera-on ( NextGen ) Sequencing Technologies Jay Shendure Read Length is Not As Important For Resequencing % of Paired K-mers with Uniquely Assignable Location 100% 90% 80% 70% 60% 50% 40% 30% 20%

More information

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS

FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS FUTURE PROSPECTS IN MOLECULAR INFECTIOUS DISEASES DIAGNOSIS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme

Illumina (Solexa) Throughput: 4 Tbp in one run (5 days) Cheapest sequencing technology. Mismatch errors dominate. Cost: ~$1000 per human genme Illumina (Solexa) Current market leader Based on sequencing by synthesis Current read length 100-150bp Paired-end easy, longer matepairs harder Error ~0.1% Mismatch errors dominate Throughput: 4 Tbp in

More information

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms

Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Ultrasequencing: Methods and Applications of the New Generation Sequencing Platforms Laura Moya Andérico Master in Advanced Genetics Genomics Class December 16 th, 2015 Brief Overview First-generation

More information

DNA-Sequencing. Technologies & Devices

DNA-Sequencing. Technologies & Devices DNA-Sequencing Technologies & Devices Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day, 850 nt reads 2 Mb/day, 550 nt reads Roche/454 GS FLX 12/2006 800 Mb/23h, 800 nt reads

More information

DNA-Sequencing. Technologies & Devices

DNA-Sequencing. Technologies & Devices DNA-Sequencing Technologies & Devices Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day, 850 nt reads 2 Mb/day, 550 nt reads Roche/454 GS FLX 12/2006 800 Mb/23h, 800 nt reads

More information

The Genome Analysis Centre. Building Excellence in Genomics and Computa5onal Bioscience

The Genome Analysis Centre. Building Excellence in Genomics and Computa5onal Bioscience Building Excellence in Genomics and Computa5onal Bioscience Resequencing approaches Sarah Ayling Crop Genomics and Diversity sarah.ayling@tgac.ac.uk Why re- sequence plants? To iden

More information

Matthew Tinning Australian Genome Research Facility. July 2012

Matthew Tinning Australian Genome Research Facility. July 2012 Next-Generation Sequencing: an overview of technologies and applications Matthew Tinning Australian Genome Research Facility July 2012 History of Sequencing Where have we been? 1869 Discovery of DNA 1909

More information

Next generation sequencing in diagnostic laboratories: opportunities and challenges

Next generation sequencing in diagnostic laboratories: opportunities and challenges Next generation sequencing in diagnostic laboratories: opportunities and challenges Vitali Sintchenko Marie Bashir Institute for Emerging Infectious Diseases & Biosecurity Declaration No conflict of interest

More information

Revolutionize Genomics with SMRT Sequencing. Single Molecule, Real-Time Technology

Revolutionize Genomics with SMRT Sequencing. Single Molecule, Real-Time Technology Revolutionize Genomics with SMRT Sequencing Single Molecule, Real-Time Technology Resolve to Master Complexity Despite large investments in population studies, the heritability of the majority of Mendelian

More information

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias Genome Sequencing I: Methods MMG 835, SPRING 2016 Eukaryotic Molecular Genetics George I. Mias Department of Biochemistry and Molecular Biology gmias@msu.edu Sequencing Methods Cost of Sequencing Wetterstrand

More information

INTRODUCTION TO GENOMICS & SEQUENCING

INTRODUCTION TO GENOMICS & SEQUENCING With thanks to: Mark Pallen Lex Nederbragt NICK LOMAN UNIVERSITY OF BIRMINGHAM INTRODUCTION TO GENOMICS & SEQUENCING PICTURE QUIZ http://en.wikipedia.org/wiki/charles_darwin 1859 http://www2.hn.psu.edu/faculty/jmanis/darwin/originspecies.pdf

More information

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells DNA based HLA typing methods By: Yadollah Shakiba, MD, PhD MHC Region MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells Nomenclature of HLA Alleles Assigned

More information

Deep Sequencing technologies

Deep Sequencing technologies Deep Sequencing technologies Gabriela Salinas 30 October 2017 Transcriptome and Genome Analysis Laboratory http://www.uni-bc.gwdg.de/index.php?id=709 Microarray and Deep-Sequencing Core Facility University

More information

Functional Genomics Research Stream. Research Meetings: November 2 & 3, 2009 Next Generation Sequencing

Functional Genomics Research Stream. Research Meetings: November 2 & 3, 2009 Next Generation Sequencing Functional Genomics Research Stream Research Meetings: November 2 & 3, 2009 Next Generation Sequencing Current Issues Research Meetings: Meet with me this Thursday or Friday. (bring laboratory notebook

More information

Next-Generation Sequencing. Technologies

Next-Generation Sequencing. Technologies Next-Generation Next-Generation Sequencing Technologies Sequencing Technologies Nicholas E. Navin, Ph.D. MD Anderson Cancer Center Dept. Genetics Dept. Bioinformatics Introduction to Bioinformatics GS011062

More information

Whole Genome Sequence Data Quality Control and Validation

Whole Genome Sequence Data Quality Control and Validation Whole Genome Sequence Data Quality Control and Validation GoSeqIt ApS / Ved Klædebo 9 / 2970 Hørsholm VAT No. DK37842524 / Phone +45 26 97 90 82 / Web: www.goseqit.com / mail: mail@goseqit.com Table of

More information

TREE CODE PRODUCT BROCHURE

TREE CODE PRODUCT BROCHURE TREE CODE PRODUCT BROCHURE Single Molecule, Real-Time (SMRT) Sequencing technology offers: Long read sequencing ~10 Gb with 20 kb average read lengths for WGS ~20 Gb with 40 kb average read length for

More information

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING'

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' Bioinformàtica per a la Recerca Biomèdica Ricardo Gonzalo Sanz ricardo.gonzalo@vhir.org 14/12/2016 1. Introduction to NGS 2. First Generation

More information

1. Introduction Gene regulation Genomics and genome analyses

1. Introduction Gene regulation Genomics and genome analyses 1. Introduction Gene regulation Genomics and genome analyses 2. Gene regulation tools and methods Regulatory sequences and motif discovery TF binding sites Databases 3. Technologies Microarrays Deep sequencing

More information

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center High Throughput Sequencing the Multi-Tool of Life Sciences Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center Complementary Approaches Illumina Still-imaging of clusters (~1000

More information

EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL

EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL EURL WORKING GROUP ON WHOLE GENOME SEQUENCING AND PULSENET INTERNATIONAL EURL-Campylobacter workshop, 9/10-2018 Joakim Skarin, SVA Objectives of the WG-NGS To promote the use of NGS across the EURL networks

More information

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture The use of new sequencing technologies for genome analysis Chris Mattocks National Genetics Reference Laboratory (Wessex) NGRL (Wessex) 2008 Outline General principles of clonal sequencing Analysis principles

More information

1.1 Post Run QC Analysis

1.1 Post Run QC Analysis Post Run QC Analysis 100 339 200 01 1. Post Run QC Analysis 1.1 Post Run QC Analysis Welcome to Pacific Biosciences' Post Run QC Analysis Overview. This training module will describe the workflow to assess

More information

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis

Introduction to NGS. Josef K Vogt Slides by: Simon Rasmussen Next Generation Sequencing Analysis Introduction to NGS Josef K Vogt Slides by: Simon Rasmussen 2017 Life science data deluge Massive unstructured data from several areas DNA, patient journals, proteomics, imaging,... Impacts Industry, Environment,

More information

Using New ThiNGS on Small Things. Shane Byrne

Using New ThiNGS on Small Things. Shane Byrne Using New ThiNGS on Small Things Shane Byrne Next Generation Sequencing New Things Small Things NGS Next Generation Sequencing = 2 nd generation of sequencing 454 GS FLX, SOLiD, GAIIx, HiSeq, MiSeq, Ion

More information

Next Gen Sequencing. Expansion of sequencing technology. Contents

Next Gen Sequencing. Expansion of sequencing technology. Contents Next Gen Sequencing Contents 1 Expansion of sequencing technology 2 The Next Generation of Sequencing: High-Throughput Technologies 3 High Throughput Sequencing Applied to Genome Sequencing (TEDed CC BY-NC-ND

More information

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms Next Generation Sequencing Lecture Saarbrücken, 19. March 2012 Sequencing Platforms Contents Introduction Sequencing Workflow Platforms Roche 454 ABI SOLiD Illumina Genome Anlayzer / HiSeq Problems Quality

More information

Chapter 7. DNA Microarrays

Chapter 7. DNA Microarrays Bioinformatics III Structural Bioinformatics and Genome Analysis Chapter 7. DNA Microarrays 7.9 Next Generation Sequencing 454 Sequencing Solexa Illumina Solid TM System Sequencing Process of determining

More information

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018

Introduction to NGS. Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Introduction to NGS Simon Rasmussen Associate Professor DTU Bioinformatics Technical University of Denmark 2018 Life science data deluge Massive unstructured data from several areas DNA, patient journals,

More information

2nd (Next) Generation Sequencing 2/2/2018

2nd (Next) Generation Sequencing 2/2/2018 2nd (Next) Generation Sequencing 2/2/2018 Why do we want to sequence a genome? - To see the sequence (assembly) To validate an experiment (insert or knockout) To compare to another genome and find variations

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

HLA-Typing Strategies

HLA-Typing Strategies HLA-Typing Strategies Cologne, 13.5.2017 Joannis Mytilineos MD, PhD Department of Transplantation Immunology Institute for Clinical Transfusion Medicine and Immunogenetics German Red Cross Blood Transfusion

More information

Current'Advances'in'Sequencing' Technology' James'Gurtowski' Schatz'Lab'

Current'Advances'in'Sequencing' Technology' James'Gurtowski' Schatz'Lab' Current'Advances'in'Sequencing' Technology' James'Gurtowski' Schatz'Lab' Outline' 1. Assembly'Review' 2. Pacbio' Technology'Overview' Data'CharacterisFcs' Algorithms' Results' 'Assemblies' 3. Oxford'Nanopore'

More information

Next Generation Sequencing. Josef K Vogt Slides by: Simon Rasmussen

Next Generation Sequencing. Josef K Vogt Slides by: Simon Rasmussen Next eneration Sequencing Josef K Vogt Slides by: Simon Rasmussen 2017 Second generation sequencing 454 Illumina 10 6-10 9 90% market share SOLiD Ion Torrent (PM) Library preparation 1.reate library molecules

More information

Next Generation Sequencing. Simon Rasmussen Assistant Professor Center for Biological Sequence analysis Technical University of Denmark

Next Generation Sequencing. Simon Rasmussen Assistant Professor Center for Biological Sequence analysis Technical University of Denmark Next eneration Sequencing Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark DNA Sequencing DNA sequencing Reading the order of bases in DNA fragments

More information

AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE

AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE We provide: AUDREY FARBOS JEREMIE POSCHMANN PAUL O NEILL KONRAD PASZKIEWICZ KAREN MOORE State of the art genomics and bioinformatics analysis Training in experimental techniques, analysis and modelling

More information

Sequencing technologies

Sequencing technologies Sequencing technologies part of High-Throughput Analyzes of Genome Sequenzes Computational EvoDevo University of Leipzig Leipzig, WS 2014/15 Sanger Sequencing (Chain Termination Method) Sequencing of one

More information

Understanding the science and technology of whole genome sequencing

Understanding the science and technology of whole genome sequencing Understanding the science and technology of whole genome sequencing Dag Undlien Department of Medical Genetics Oslo University Hospital University of Oslo and The Norwegian Sequencing Centre d.e.undlien@medisin.uio.no

More information

Molecular markers in plant systematics and population biology

Molecular markers in plant systematics and population biology Molecular markers in plant systematics and population biology 9. Next-generation sequencing (NGS) Tomáš Fér tomas.fer@natur.cuni.cz Next generation sequencing (NGS) first generation Sanger sequencing second

More information

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis 1 Genetic Analysis Phenotype analysis: biological-biochemical analysis Behaviour under specific environmental conditions Behaviour of specific genetic configurations Behaviour of progeny in crosses - Genotype

More information

Bioinformatics: A perspective

Bioinformatics: A perspective Bioinformatics: A perspective Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu Outline Advances in DNA Sequencing The World we are presented with Bioinformatics

More information

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis

Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis 1 Genetic Analysis Phenotype analysis: biological-biochemical analysis Behaviour under specific environmental conditions Behaviour of specific genetic configurations Behaviour of progeny in crosses - Genotype

More information

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center

High Throughput Sequencing the Multi-Tool of Life Sciences. Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center High Throughput Sequencing the Multi-Tool of Life Sciences Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center DNA Technologies & Expression Analysis Cores HT Sequencing (Illumina

More information

Whole Genome Sequencing for TB diagnostics. Adam Witney. Institute for Infection and Immunity St George s, University of London

Whole Genome Sequencing for TB diagnostics. Adam Witney. Institute for Infection and Immunity St George s, University of London Whole Genome Sequencing for TB diagnostics Adam Witney Institute for Infection and Immunity St George s, University of London INSTITUTE FOR INFECTION & IMMUNITY WGS applications in TB diagnostics Resistance

More information

Bioinformatics: A perspective

Bioinformatics: A perspective Bioinformatics: A perspective Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu Outline The World we are presented with Advances in DNA Sequencing Bioinformatics

More information

Sequencing workflows

Sequencing workflows Sequencing workflows WEBINAR 3: February 19, 15:00-16:30 CET: Applications, protocols, and workflows Webinar Series 2019, Next-generation sequencing for drug-resistant TB Andrea M. Cabibbe WHO Collaborating

More information

Next Generation Sequencing. Tobias Österlund

Next Generation Sequencing. Tobias Österlund Next Generation Sequencing Tobias Österlund tobiaso@chalmers.se NGS part of the course Week 4 Friday 13/2 15.15-17.00 NGS lecture 1: Introduction to NGS, alignment, assembly Week 6 Thursday 26/2 08.00-09.45

More information

Illumina Sequencing Overview

Illumina Sequencing Overview Illumina Sequencing Overview Part # 15045845_Rev.C 2013 Illumina, Inc. All rights reserved. Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cbot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic

More information

Molecular methods to characterize the microbiota in the mouse tissues

Molecular methods to characterize the microbiota in the mouse tissues Molecular methods to characterize the microbiota in the mouse tissues Olivier Bouchez, GeT-PlaGe, INRA Toulouse @GeT_Genotoul Who are we? Genomic and transcriptomic core facility spreads on 5 sites GeT

More information

Sequencing techniques and applications

Sequencing techniques and applications I519 Introduction to Bioinformatics Sequencing techniques and applications Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Sequencing techniques Sanger sequencing Next generation

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

NB536: Bioinformatics

NB536: Bioinformatics NB536: Bioinformatics Instructor Prof. Jong Kyoung Kim Department of New Biology Office: E4-613 E-mail: jkkim@dgist.ac.kr Homepage: https://scg.dgist.ac.kr Course website https://scg.dgist.ac.kr/index.php/courses

More information

4. Analysing genes II Isolate mutants*

4. Analysing genes II Isolate mutants* .. 4. Analysing s II Isolate mutants* Using the mutant to isolate the classify mutants by complementation analysis wild type study phenotype of mutants mutant 1 - use mutant to isolate sequence put individual

More information

The Iso-Seq Method: Transcriptome Sequencing Using Long Reads

The Iso-Seq Method: Transcriptome Sequencing Using Long Reads The Iso-Seq Method: Transcriptome Sequencing Using Long Reads Elizabeth Tseng, Ph.D. Senior Staff Scientist FIND MEANING IN COMPLEXITY For Research Use Only. Not for use in diagnostic procedures. Copyright

More information

High throughput DNA Sequencing. An Equal Opportunity University!

High throughput DNA Sequencing. An Equal Opportunity University! High throughput DNA Sequencing An Equal Opportunity University! irst Generation DNA sequencing utilize chain terminator technologies (adaptation of Sanger sequencing) Adapt fluorescence chemistry, high-resolution

More information

Wet-lab Considerations for Illumina data analysis

Wet-lab Considerations for Illumina data analysis Wet-lab Considerations for Illumina data analysis Based on a presentation by Henriette O Geen Lutz Froenicke DNA Technologies and Expression Analysis Cores UCD Genome Center Complementary Approaches Illumina

More information

RADseq Data Analysis Workshop 3 February 2017

RADseq Data Analysis Workshop 3 February 2017 RADseq Data Analysis Workshop 3 February 2017 Introduction to Galaxy (thanks to Simon Gladman for slides) What is Galaxy? A web-based scalable workflow platform for genomic analysis Designed for biologists

More information

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow Marcus Hausch, Ph.D. 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life, Oligator,

More information

Forensic genetics: New frontiers

Forensic genetics: New frontiers Forensic genetics: New frontiers Dennis McNevin (CRICOS) #00212K DNA profiles First application of DNA profiling : The Enderby murder case A single locus minisatellite probe was used to analyze the following

More information

SMARTer for NGS. SMARTer Solutions 다카라코리아바이오메디칼

SMARTer for NGS. SMARTer Solutions 다카라코리아바이오메디칼 SMARTer for NGS SMARTer Solutions 다카라코리아바이오메디칼 Contents Next Generation Sequencing SMARTer Sequencing Kits Single Cell RNA-Seq & mrna-seq SMARTer Ultra Low Input RNA Kit for Sequencing -v3 SMARTer Ultra

More information

Factors affecting PCR

Factors affecting PCR Lec. 11 Dr. Ahmed K. Ali Factors affecting PCR The sequences of the primers are critical to the success of the experiment, as are the precise temperatures used in the heating and cooling stages of the

More information

Advanced Technology in Phytoplasma Research

Advanced Technology in Phytoplasma Research Advanced Technology in Phytoplasma Research Sequencing and Phylogenetics Wednesday July 8 Pauline Wang pauline.wang@utoronto.ca Lethal Yellowing Disease Phytoplasma Healthy palm Lethal yellowing of palm

More information

Isoform sequencing PacBio RSII. Anna Bratus PacBio User Meeting, Barcelona, November 10, 2015

Isoform sequencing PacBio RSII. Anna Bratus PacBio User Meeting, Barcelona, November 10, 2015 Isoform sequencing PacBio RSII Anna Bratus PacBio User Meeting, Barcelona, November 10, 2015 SCHEDULE I. CASE STUDY II. III. LIBRARY PREPARATION SEQUENCING IV. DATA OUTCOME V. CONCLUSIONS 2 CASE STUDY

More information

Welcome to the NGS webinar series

Welcome to the NGS webinar series Welcome to the NGS webinar series Webinar 1 NGS: Introduction to technology, and applications NGS Technology Webinar 2 Targeted NGS for Cancer Research NGS in cancer Webinar 3 NGS: Data analysis for genetic

More information

Library construc.on (overviews and challenges)

Library construc.on (overviews and challenges) Computa(onal Biology and Genomics Workshop April 18-22, 2016 Colorado State University Todos Santos Center Library construc.on (overviews and challenges) Aines Castro Prieto ainescastrop@gmail.com Content

More information