Handbook of Cellulosic Ethanol

Size: px
Start display at page:

Download "Handbook of Cellulosic Ethanol"

Transcription

1

2

3 Handbook of Cellulosic Ethanol

4 Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA Publishers at Scrivener Martin Scrivener Phillip Carmical

5 Handbook of Cellulosic Ethanol Ananda S. Amarasekara Department of Chemistry, Prairie View A&M University, Texas, USA

6 Copyright 2014 by Scrivener Publishing LLC. All rights reserved. Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or other - wise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) , fax (978) , or on the web at Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) , fax (201) , or online at Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) , outside the United States at (317) or fax (317) Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at For more information about Scrivener products please visit Cover design by Russell Richardson Library of Congress Cataloging-in-Publication Data: ISBN Printed in the United States of America

7 Contents Preface xvii Part 1 Introduction to Cellulosic Ethanol 1 1 Renewable Fuels Introduction Renewable Energy Biofuels Advantages of Biofuels Gaseous Biofuels Liquid Biofuels Renewable Energy in the United States Federal Agencies Promoting Renewable Energy Incentives for Renewable Fuels Renewable Fuel Legislature in the United States Renewable Fuel Standards of Energy Independence and Security Act of US EPA 2013 Renewable Fuel Standards 22 References 25 2 Bioethanol as a Transportation Fuel Introduction History of Bioethanol as a Transportation Fuel Alcohol Fuels Fuel Characteristics of Ethanol Disadvantages of Ethanol 33 v

8 vi Contents 2.4 Corn and Sugarcane Ethanol First Generation Ethanol Production Advantages of Cellulosic Ethanol 35 References 40 3 Feedstocks for Cellulosic Ethanol Production Introduction Cellulosic Ethanol Feedstock Types Potential of Agricultural Wastes Major Crop Residue Feedstock Corn Stover Wheat Straw Rice Straw Sugarcane Bagasse Barley Straw Forestry Residue, Logging and Mill Residue Grass Feedstocks Switchgrass Miscanthus Grass Prairie Cordgrass Arundo Donax or Giant Reed Reed Canary Grass Alfalfa Other Grasses Purpose-Grown Trees as Feedstock Poplar Willows Pines Eucalyptus Municipal and Other Waste as Feedstock for Cellulosic Ethanol Municipal Waste Feedstock Utilizing Cellulosic Ethanol Plants 107 References 108

9 Contents vii Part 2 Aqueous Phase Biomass Hydrolysis Route Challenges in Aqueous-Phase Biomass Hydrolysis Route: Recalcitrance Introduction Two Ways to Produce Cellulosic Ethanol Challenges in Aqueous-Phase Biomass Hydrolysis Structure of Plant Cells and Lignocellulosic Biomass Major Components of Lignocellulosic Biomass Cellulose Hemicellulose Lignin Cellulose Recalcitrance 140 References Pretreatment of Lignocellulosic Biomass Introduction Different Categories of Pretreatment Methods Physical Pretreatment Machinery Used in Physical Pretreatment Physical Pretreatment of Woody Biomass Physicochemical Pretreatment Steam Explosion or Steam Pretreatment Liquid Hot Water (LHW) Pretreatment Ammonia-Based Pretreatments Method Ammonia Fiber/Freeze Explosion (AFEX) Ammonia Recycle Percolation (ARP) Soaking Aqueous Ammonia (SAA) Supercritical Carbon Dioxide Pretreatment Organosolv Pretreatment Ionic Liquid (IL) Pretreatment N-Methyl Morpholine N-Oxide (NMMO) Pretreatment Chemical Pretreatment Aqueous Acid Pretreatment Sulfur Dioxide Pretreatment Alkaline Pretreatment Methods Lime Pretreatment 183

10 viii Contents Aqueous Alkali Hydroxide-Based Pretreatments Wet Oxidation Pretreatment Ozone Pretreatment Biological Pretreatment Conclusion 191 References Enzymatic Hydrolysis of Cellulose and Hemicellulose Introduction Enzymatic Actions on Lignocellulosic Biomass Enzymatic Hydrolysis of Cellulose Cellulose Hydrolysis Mechanisms Cellulase Preparation Methods In-Plant Cellulase Production Immobilization of Cellulases Immobilization on Nanoparticles Enzymatic Hydrolysis of Hemicellulose Hemicellulose Hydrolysis Mechanisms Hemicellulases Preparation Methods Future Directions in Enzymatic Cellulose Hydrolysis Research 237 References Acid Hydrolysis of Cellulose and Hemicellulose Introduction Concentrated Acid Hydrolysis Arkenol Process Mechanism of the Concentrated Acid Hydrolysis Recent Advances in the Concentrated Acid Process Dilute Acid Hydrolysis Percolation Reactors Plug Flow Reactors Bed-Shrinking Flow through Reactors 255

11 Contents ix Comparisons and Modeling Studies on Hydrolysis Reactors Recent Advances in Dilute Acid Process Different Acids Ionic Liquid-Based Direct Acid Hydrolysis Acid Catalysts in Ionic Liquid Solutions Solid Acid Catalysts in Ionic Liquid Solutions Acid Group Functionalized Ionic Liquids Solid Acid Hydrolysis Zeolites Cation-Exchange Resins Metal Oxide Supported Solid Acid Catalysts Carbonaceous Solid Supported Acid Catalysts 271 References Fermentation I Microorganisms Introduction Detoxification of Lignocellulosic Hydrolyzate Separate Hydrolysis and Fermentation (SHF) Microorganisms Used in the Fermentation Fermentation Using Yeasts Genetic Modification of Yeasts Fermentation Using Bacteria Genetic Modifications of Bacteria Simultaneous Saccharification and Fermentation (SSF) SSF Using a Mixture of Saccharification and Fermentation Microorganisms SSF Using Microorganisms that Can Do both Saccharification and Fermentation or Consolidated Bio-Processing (CBP) Heterologous Expression of Cellulase Genes in Yeast S. cerevisiae for the Development of CBP Surface-Engineered Yeast Strains for the CBP 312

12 x Contents Cell Recycle Batch Fermentation (CRBF) Comparison of Different Fermentation Configurations Immobilization of Yeast 317 References Fermentation II Fermenter Configuration and Design Introduction Batch Fermentation Examples of Batch Fermentation Fed-Batch Fermentation Advantages and Disadvantages of Fed-Batch Fermentation Examples of Fed-Batch Fermentation Types of Fed-Batch Fermentation Reactors Fixed Volume Fed-batch Reactors Variable Volume Fed-batch Reactors Control Techniques for Fed-Batch Fermentation Continuous Fermentation Types of Continuous Fermentation Reactors Advantages of Continuous Fermentation Examples of Continuous Fermentation Continuous Fermentation Using Immobilized Microorganisms New Directions in Fermenter Configuration and Design 352 References Separation and Uses of Lignin Introduction Structure of Lignin Separation of Lignin in the Cellulosic Ethanol Process Physical and Chemical Properties of Lignin Applications of Lignin Lignin-Based Phenol Formaldehyde Resins Lignin-Phenol co-polymers as Adhesives 366

13 Contents xi Lignin-Polyolefin Blends Lignin-Polyvinyl Polymer Blends Lignin-Rubber Blends Preparation of Vanillin from Lignin Synthesis of Vanillin-Based Polymers 371 References 373 Part 3 Biomass Gasification Route Biomass Pyrolysis and Gasifier Designs Introduction Chemistry of the Conversion of Biomass to Syngas Composition of the Syngas Classifications of Biomass Gasifiers Fixed-Bed Gasifier Fluidized-Bed Gasifier Bubbling Fluidized-Bed (BFB) Gasifier Circulating Fluidized-Bed (CFB) Gasifier Allothermal Dual Fluidized-Bed (DFB) Gasifier Entrained-Flow Gasifier Syngas Cleaning Hot Gas Cleaning Inertial Separation Using Cyclone Gas Cleaning Filters Electrostatic Separations Cold Wet Gas Cleaning or Conventional Gas Cleaning Tar Control and Treatment Methods 403 References Conversion of Syngas to Ethanol Using Microorganisms Introduction Advantages and Disadvantages of Biocatalysis Metabolic Pathways Microorganisms Used in Syngas Fermentation Biochemical Reactions in Syngas Fermentation 414

14 xii Contents 12.5 The Effects of Operation Parameters on Ethanol Yield The Effect of Culture Media Effect of Medium ph The Effect of Carbon Source The Effect of Inhibitors and Impurities in Syngas The Effect of Gas Pressure Syngas Fermentation Reactors Industrial-Scale Syngas Fermentation and Commercialization 426 References Conversion of Syngas to Ethanol Using Chemical Catalysts Introduction Homogeneous Catalysts Introduction to Heterogeneous Catalysts Heterogeneous Catalyst Types Rhodium-Based Catalysts Studies on Reduction of CO and CO Role of Promoters Role of Catalyst Support New Catalyst Supports Copper-Based Modified Methanol Synthesis Catalysts Copper Nanoparticles-Based Catalysts Modified Fischer-Tropsch Type Catalysts Molybdenum-Based Catalysts Catalyst Selection 459 References 461

15 Contents xiii Part 4 Processing of Cellulosic Ethanol Distillation of Ethanol Introduction Distillation of the Beer How Distillation Works Conventional Ethanol Distillation System Beer Column or Stripping Column Rectifying or Refining Column Side Stripper Column Steam Generation for Distillation Process Design Basis of the Boiler Studies on Development of Hybrid Systems for Ethanol Distillation 476 References Dehydration to Fuel Grade Ethanol Introduction Dehydration Methods Adsorption Method Dehydration of Ethanol Using Zeolite Molecular Sieves Dehydration of Ethanol Using other Adsorbents Azeotropic Distillation Method Extractive Distillation Methods Extractive Distillation Using High Boiling Solvents Extractive Distillation Using Salts Membrane-Based Pervaporation Methods Direct Pervaporation of Ethanol from Fermentation Broth Other Dehydration Methods Comparisons of Common Dehydration Methods 498 References 500

16 xiv Contents Part 5 Fuel Ethanol Standards and Process Evaluation Fuel Ethanol Standards, Testing and Blending Introduction Fuel Grade Ethanol Standards in the United States Quality Assurance and Test Methods Visual Clarity American Petroleum Institute (API) Gravity phe Level Sulfur Content Total Sulfate Inorganic Chloride ASTM D 5501 GC Analysis for Ethanol, Methanol and Denaturant European Fuel Ethanol Standards European Fuel Grade Ethanol Standard pren Material Safety Data Sheet (MSDS) for Denatured Fuel Ethanol Gasoline Ethanol Blends Ethanol Blends Used around the World Blender Pump Blends Engine Performance Using Gasoline Ethanol Blends 524 References Techno-Economic Analysis and Future of Cellulosic Ethanol Introduction Techno-Economic Aspects of Biomass Hydrolysis Process Techno-Economic Aspects of Biomass Gasification Process Comparison of Biomass Hydrolysis and Gasification Processes Some Cellulosic Plants around the World 540

17 Contents xv 17.6 Challenges in Cellulosic Ethanol Technological Challenges Future Prospects of Cellulosic Ethanol 553 References 554 Appendix Index 575

18

19 Preface The inevitable decline in petroleum reserves and the rise in demand for oil from rapidly growing economies have caused soaring oil prices, and coupled with climate change concerns have contributed to the current interest in renewable energy resources. In some parts of the world this interest has resulted in the introduction of legislations promoting the use of renewable energy resources and increasing government incentives for commercialization of renewable energy technologies. Development of science and technologies for efficient conversion of lignocellulosic biomass to renewable liquid transportation fuels has become one of the high priority research areas of the day, and bioethanol is the most successful biofuel to date. Corn- and sugarcane-derived first generation bioethanol is currently in wide use as a blend-in fuel in gasoline sold in the United States, Brazil, and in a few other countries. However, there are a number of major drawbacks to these first generation fuels such as the effect on food prices as traditional food resources are utilized as raw materials, net energy balance, and poor greenhouse gas mitigation. Cellulosic ethanol is a second generation biofuel produced from agricultural wastes, grasses, municipal wastes, and other feedstocks that do not double as food, so unlike traditional corn-based ethanol, it promises to avoid encroaching upon and destabilizing the human food supply. In addition, cellulosic ethanol can be produced from a variety of abundant lignocellulosic biomass feedstocks, and should be able to be produced in substantial amounts to meet the growing global energy demand. There are two fundamental routes to produce cellulosic ethanol from renewable biomass: the aqueous-phase biomass saccharification-fermentation route, xvii

20 xviii Preface and thermochemical gasification route. The thermochemical route can be divided into two paths as syngas produced from biomass can be converted to ethanol by chemical or enzymatic methods. This handbook is a comprehensive up-to-date guide to cellulosic ethanol, divided into five parts: introduction to cellulosic ethanol, aqueous-phase biomass hydrolysis route, biomass gasification route, processing of fuel grade ethanol, and techno-economical evaluation of the processes. The first part covering Chapters 1 to 3 introduces the reader to cellulosic ethanol, presenting the advantages over first generation corn or sugarcane ethanol. In the United States, the gradual transition to renewable energy sources is supported by a series of legislations and government incentives, and these aspects of bioethanol are also discussed in this part. Then, various types of cellulosic ethanol feedstocks are presented in the third chapter, including agricultural wastes, fast growing grasses such as switchgrass and trees like poplar, forestry residues and municipal wastes. The second part of the book covering Chapters 4 to 10 presents the cellulolysis processes or aqueous-phase biomass saccharification-fermentation route. Chapters 4 and 5 detail the challenges in biomass saccharification, or recalcitrance, as well as various pretreatment techniques such as physical, physicochemical, chemical, and biological pretreatments, and applications to different feedstocks. Chapter 6 covers the enzymatic saccharification, including cellulases, hemicellulase families, mechanisms, enzyme preparation methods, and immobilization of enzymes. Chapter 7 is dedicated to acid hydrolysis, or direct saccharification, using various acid catalysts: concentrated, dilute mineral acids, progress in ionic liquid-based systems, acid group functionalized ionic liquids, and solid acids. Fermentation of the sugar solution to beer is presented in Chapters 8 and 9. The microorganisms used in the fermentations, including recent advances in genetic modifications of microorganisms, separate hydrolysis fermentation (SHF), simultaneous saccharification and fermentation (SSF), consolidated bioprocessing (CBP), and surface-engineered and immobilized yeasts are covered in detail in Chapter 8. Fermentation configurations and engineering aspects of fermenter design are presented in Chapter 9. In addition, separation and utilization of lignin byproduct is also covered in this section, under Chapter 10, introducing the total biorefinery concept.

21 Preface xix The third part of the book (Chapters 11 13) is dedicated to the biomass gasification route, which is an alternative approach for producing ethanol from lignocellulosic biomass. Pyrolysis chemistry, gasifier designs, and syngas cleaning are covered in Chapter 11, whereas the conversion of syngas to ethanol using microorganisms and their metabolic pathways are presented in Chapter 12. Syngas produced from biomass can be transformed into ethanol using metal catalysts such as Rh-, Mo- or Cu-based systems as well, and this route is presented in Chapter 13. Processing of ethanol produced thorough various paths is presented in Part 4 of the book. Concentration of ethanol to approximately 90% ethanol by distillation is the first step in purification of ethanol. Technologies used in the current first generation ethanol industry for distillation of the beer to an azeotrope mixture, and then dehydration to > 99.5% fuel grade ethanol, are adoptable to cellulosic ethanol as well. Engineering aspects of the industrial three column distillation set up and recent technological advances like pervaporation are discussed in Chapters 14 and 15. Part 5 provides the details of fuel ethanol standards and process evaluation. Fuel grade ethanol standards in the US and EU, testing methods, and quality control are some of the sections in Chapter 16. Finally, the techno-economic aspects of cellulosic ethanol, a list of current and under-construction cellulosic ethanol plants around the world as of June, 2013, and the future prospects of cellulosic ethanol are presented in Chapter 17. It is my great pleasure to thank Scrivener Publishing and John Wiley & Sons for kindly agreeing to publish this book. Finally, I wish to thank my wife Preethika, daughter Hiruni, and son Hasun for their love, support, encouragement, and patience during the writing of this book. Ananda S. Amarasekara June, 2013

22

23 Part 1 Introduction to Cellulosic Ethanol

24

25 1 Renewable Fuels 1.1 Introduction Since the beginning of civilization on earth, humans have used biomass for many of their energy needs such as cooking, heating dwellings, lighting, firing clay pots, and processing metals. The industrial revolution, leading to the development of the internal combustion engine for transportation and coal power plants for electricity generation have caused a rapid shift in our energy dependence from renewable resources to non-renewable fossil fuel resources. The processes of industrialization and continuous economic development are driven by energy consumption. The global demand for energy is expected to increase at a faster rate in upcoming years due to rapidly developing economies and partly due to the exponential growth in the world s population. The energy demand predictions for the Organization for Economic Cooperation and Development (OECD) nations as well as for non-oecd nations are available in the International Energy Outlook report of the U.S. Department of Energy. The world energy consumption from 1990 with predictions till 2035 is shown in the 3

26 4 Handbook of Cellulosic Ethanol 800 Energy (quadrillion BTU) Non-OECD OECD Figure 1.1 World energy consumption from (quadrillion BTU) from International Energy Outlook report released in 2011 [1]. bar graph in Figure 1.1 [1]. This study forecasts that total world energy use will rise to 619 quadrillion BTU (British thermal unit) in 2020, and 770 quadrillion BTU in 2035 from the 2008 value of 505 quadrillion BTU. Furthermore, much of the growth in energy consumption is expected to occur in countries outside the Organization for Economic Cooperation and Development (non-oecd nations) where demand is driven by strong long-term economic growth. Energy use in non-oecd nations increases by 85 percent in the reference case, as compared with an increase of 18 percent for the OECD economies as shown in Figure 1.1 [1]. At a time of rapid increase in global energy consumption, energy sources are a critical term in the energy equation. As of 2012, more than 80% of the world s energy needs are fulfilled by fossil fuels and the contributions to global energy demand from different resources are presented in the Global Renewable Energy Share Report; the current shares of principal resources are shown in the pie chart in Figure 1.2 [2]. Total renewable energy share is 16.7%, and these sources can be divided into two groups: traditional renewables and modern renewables. On the global scale, the share of traditional renewables is slightly higher than all the combined modern renewables. Traditional biomass energy sources such as firewood,

27 Renewable Fuels 5 8.5% Traditional renewables 8.2% Modern renewables 2.7% nuclear 3.3% Biomass/solar/ geothermal hot water/heating 3.3% Hydropower 0.9% Wind/solar/ biomass/ geothermal power generation 0.7% Biofuels 80.6% Fossil fuel Figure 1.2 Renewable energy share of global final energy consumption, from Renewable Energy 2012 Global status report, Paris [2]. which are used primarily for cooking and heating in rural areas of developing countries, could be considered renewable. These traditional renewables account for approximately 8.5% of total final energy consumption. Modern renewable energy is dominated by hydropower for electricity generation and accounts for 3.3%; heat generation using modern biomass-derived fuels such as biogas, geothermal and solar heating accounts for another 3.3%. Biomassderived transportation biofuel such as bioethanol and biodiesel supplies only 0.7% of the current global energy requirement. While fossil fuels have become the world s main energy resource and are at the center of global energy demands, its reserves are limited. There are varying estimates of fossil fuel reserves on earth. In spite of all the recent advances in oil exploration technologies, the frequency of new oil and coal discoveries has rapidly diminished in the last twenty years. In cases like shale oil and fracking, much higher efforts and investments are required for extraction of fossil fuel from earth. As a finite resource depletion of petroleum reserves is inevitable, limitations in the supply have resulted in a rapid increase in fuel prices around the globe after the 1970s. However, according to the World Energy Outlook 2012 predictions, a steady increase in hydropower and rapid expansion of wind and solar power has cemented the position of renewables as an indispensable part of the global energy mix. By 2035, renewables

28 6 Handbook of Cellulosic Ethanol are expected to account for almost one-third of total electricity output [3]. Solar power is expected to grow more rapidly than any other renewable energy technology. Furthermore, in accordance with International Energy Agency (IEA) 2012 predictions, renewables will become the world s second largest source of power generation by Modern renewable energy can substitute for fossil fuels in four distinct markets: power generation, heating and cooling, transport fuels, and rural/off-grid energy services. During the last decade, total global installed capacity of many renewable energy technologies grew at very rapid rates. Solar photovoltaics (PV) grew the fastest of all renewable technologies during this period, with operating capacity increasing an average of 58% annually. It was followed by concentrating solar thermal power (CSP), which increased almost 37%, growing from a small base and wind power, which increased by 26%. The growth of liquid biofuels has been mixed in recent years, with biodiesel production expanding in 2011, and ethanol stable or down slightly compared with Hydropower and geothermal power are growing globally at rates of 2 3% per year, making them more comparable with global growth rates for fossil fuels. However, in several European countries the growth in these and other renewable energy technologies far exceeds the global average [2]. 1.2 Renewable Energy A renewable energy source can be defined as an energy source that is continually replenished, is available over the long term at a reasonable cost that can be used with minimum environmental impacts, produces minimum secondary wastes, and is sustainable based on current and future economic and social needs. This definition of renewable energy resources includes many forms such as wind energy, solar energy, biofuels, geothermal energy, and ocean wave energy. It is natural to believe that human civilization is not prepared to make sacrifices in the quality of life and inhibit energy consumptiondriven growth due to the decline in finite fossil-fuel-based energy resources. Therefore, humans who have already come this far are smart enough to realize that renewable energy is the alternative to finite fossil energy sources. In addition to this, there are many encouraging points for the development and use of renewable energy sources like diversity in energy supply options, both for developed and developing nations.

29 Renewable Fuels 7 Except in the case of geothermal energy, the sun is the primary source of all renewable energy, and currently the total energy generating capacity of all energy conversion systems built by mankind amounts to about 14 TW (terawatt). In comparison to this, the solar input is extremely large, and the continuous solar input is equivalent to TW, of which about 1000 TW could in principle be captured for energy conversion to forms we can use [4]. Of course, there are significant losses due to poor conversion efficiencies and land use constraints that need to be taken into account, but even so, there should be sufficient raw energy from the sun to meet our needs many times over. The challenge is development of efficient green technologies. Energy scenarios are widely used to describe possible paths ahead and the sustainable growth scenario produced by Shell International in 1995 has been very influential. It suggested that, by around 2060, renewables sources could meet about half of the world s total energy needs. Subsequent studies have suggested that in principle, by 2100, renewables could perhaps meet over 80% of global energy needs, assuming that they were seen as a priority for environmental reasons. Inevitably, long-term projections like this are very speculative. In 2012, modern renewables supplied around 8.2% of the world s energy, which included about 3.3% provided by hydropower electricity. The contribution is expanding rapidly, stimulated by some quite demanding targets. For example, the European Union aims to have 12.5% of its electricity produced from renewable sources by 2020, with some member countries aiming for even higher targets. Denmark aims for 29%, Finland 21.7%, Portugal 21.5% and Austria 21.1%, and these figures exclude the contribution from large hydropower plants [2]. 1.3 Biofuels Biomass-derived fuels or biofuels are an important contributor in the modern renewables slice of the energy source distribution pie chart shown in Figure 1.2. The use of biogas in heating houses, biogas-derived syngas in electricity generation and transport biofuels are some of the major applications in this type of sustainable energy. Biofuels are produced from bio-based materials through various paths such as biochemical [5, 6], and thermochemical methods [7, 8]. In general the use of unprocessed biomass forms like firewood for heating or cooking purposes are not included in this group. Chemically, many forms of biofuels contain oxygen as one

30 8 Handbook of Cellulosic Ethanol of the elements, whereas petroleum fuels are hydrocarbons free of oxygen. Another important difference is the sulfur level; all biofuels are very low in sulfur in comparison to petroleum fuels and many have low nitrogen levels as well Advantages of Biofuels Common biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, biosynthetic gas or biomass-derived syngas, bio-oil, bio-char, and bio-hydrogen. The benefits or advantages of biofuels can be broadly classified into three groups: economic, environmental, and energy security and these factors are outlined below [9, 6]. Economic impacts: Sustainability in relation to economic growth Increased number of rural manufacturing jobs in biorefinery Opportunity for certain developing countries to reduce their dependence on oil imports Increased investments in plant and equipment Fuel diversity Agricultural development International competitiveness, especially for developing countries with land resources Environmental impacts: Greenhouse gas reductions Reduction of air pollution bioethanol s high oxygen content reduces carbon monoxide levels more than any other oxygenate Biodegradability Improved land and water use Carbon sequestration Energy security: Supply reliability independent of international political climate Ready availability Ability to set domestic targets for production and markets

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA Biofuels Production Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

More information

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011)

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) The use of ethanol as an alternative motor fuel has been steadily increasing around the globe

More information

Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009)

Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009) Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009) World ethanol production has experienced spectacular growth. This growth has been based on starch and sugar

More information

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York Introduction to BIOFUELS David M. Mousdale CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents Preface Acknowledgments

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

t e g y s t r a i m p l e m e n t a t i o n M E N TA L L A N G U A G M O D E L S S T O R Y M A P S S O C I A L M E D I A

t e g y s t r a i m p l e m e n t a t i o n M E N TA L L A N G U A G M O D E L S S T O R Y M A P S S O C I A L M E D I A D E S I G N V I S U A L T H I N K I N G L A N G U A G V I R T U A L W O R K S O C I A L M E D I A s t r a M E E T t e g y V I S U A L I N G S R T U P S C O L L A B O R AT I O N S T O R Y M A P S M O D

More information

INTERNATIONAL PROJECT MANAGEMENT:

INTERNATIONAL PROJECT MANAGEMENT: INTERNATIONAL PROJECT MANAGEMENT: LEADERSHIP IN COMPLEX ENVIRONMENTS International Project Management: Leadership in Complex Environments Copyright 2010 John Wiley & Sons, Inc. ISBN: 978-0-470-57882-7

More information

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004)

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Petrochemical hydrocarbon sources are finite and many experts suggest that they will become exhausted within

More information

Troubleshooting the Sequencing Batch Reactor

Troubleshooting the Sequencing Batch Reactor Troubleshooting the Sequencing Batch Reactor Illustrations by Brittany Lytle A John Wiley & Sons, Inc., Publication Troubleshooting the Sequencing Batch Reactor WASTEWATER MICROBIOLOGY SERIES Editor Nitrification

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

INTEGRATION OF ALTERNATIVE SOURCES OF ENERGY

INTEGRATION OF ALTERNATIVE SOURCES OF ENERGY INTEGRATION OF ALTERNATIVE SOURCES OF ENERGY FELIX A. FARRET M. GODOY SIMÕES A JOHN WILEY & SONS, INC., PUBLICATION INTEGRATION OF ALTERNATIVE SOURCES OF ENERGY INTEGRATION OF ALTERNATIVE SOURCES OF

More information

Commonsense Talent Management

Commonsense Talent Management Commonsense Talent Management Commonsense Talent Management USING STRATEGIC HUMAN RESOURCES TO IMPROVE COMPANY PERFORMANCE Steven T. Hunt Copyright 2014 by John Wiley & Sons, Inc. All rights reserved.

More information

The Procurement and Supply Manager s Desk Reference

The Procurement and Supply Manager s Desk Reference The Procurement and Supply Manager s Desk Reference The Procurement and Supply Manager s Desk Reference Second Edition FRED SOLLISH, MS JOHN SEMANIK, MBA John Wiley & Sons, Inc. Copyright 2012 by John

More information

Cellulosic ethanol from agricultural residues THINK AHEAD, THINK SUNLIQUID

Cellulosic ethanol from agricultural residues THINK AHEAD, THINK SUNLIQUID Cellulosic ethanol from agricultural residues THINK AHEAD, THINK SUNLIQUID Market ready and highly efficient SUNLIQUID PROCESS FOR THE PRODUCTION OF CELLULOSIC ETHANOL By developing sunliquid technology,

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

Biofuels Research Opportunities in Thermochemical Conversion of Biomass

Biofuels Research Opportunities in Thermochemical Conversion of Biomass University of Massachusetts Amherst ScholarWorks@UMass Amherst Conference on Cellulosic Biofuels September 2008 Biofuels Research Opportunities in Thermochemical Conversion of Biomass Douglas Elliott PNL,

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments 6 th International Symposium on Fuels and Lubricants New Delhi, India March 9-12, 2008 S. Kent Hoekman, Ph.D. Desert Research Institute

More information

The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension

The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension Dr. Mairi J. Black Conference on Advanced Biofuels and Bioeconomy 2 nd December 2016, Canning

More information

MANAGEMENT OF TECHNOLOGY

MANAGEMENT OF TECHNOLOGY MANAGEMENT OF TECHNOLOGY MANAGEMENT OF TECHNOLOGY Managing Effectively in Technology-Intensive Organizations Hans J. Thamhain This book is printed on acid-free paper. Copyright 2005 by John Wiley & Sons,

More information

Forensic Accounting and Fraud Investigation for Non-Experts

Forensic Accounting and Fraud Investigation for Non-Experts Forensic Accounting and Fraud Investigation for Non-Experts Forensic Accounting and Fraud Investigation for Non-Experts Third Edition HOWARD SILVERSTONE MICHAEL SHEETZ STEPHEN PEDNEAULT FRANK RUDEWICZ

More information

Biomass Processes & Technologies Adding Value to Home Grown Resources

Biomass Processes & Technologies Adding Value to Home Grown Resources FRONTLINE BIOENERGY, LLC Renewable Fuels & Products Biomass Processes & Technologies Adding Value to Home Grown Resources Jerod Smeenk Frontline BioEnergy, LLC Home Grown Energy Conference Morris, MN February

More information

STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR STRUCTURAL ENGINEERS

STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR STRUCTURAL ENGINEERS STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR STRUCTURAL ENGINEERS Structural Stability of Steel: Concepts and Applications for Structural Engineers Theodore V. Galambos Andrea E. Surovek

More information

LIFE CYCLE RELIABILITY ENGINEERING

LIFE CYCLE RELIABILITY ENGINEERING LIFE CYCLE RELIABILITY ENGINEERING Life Cycle Reliability Engineering. Guangbin Yang Copyright 2007 John Wiley &Sons, Inc. ISBN: 978-0-471-71529-0 LIFE CYCLE RELIABILITY ENGINEERING Guangbin Yang Ford

More information

Sarbanes-Oxley Internal Controls

Sarbanes-Oxley Internal Controls Sarbanes-Oxley Internal Controls Effective Auditing with AS5, CobiT, and ITIL ROBERT R. MOELLER John Wiley & Sons, Inc. Sarbanes-Oxley Internal Controls Sarbanes-Oxley Internal Controls Effective Auditing

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

Overview of Renewable Energy Technologies: Transforming Our Energy Economy

Overview of Renewable Energy Technologies: Transforming Our Energy Economy Overview of Renewable Energy Technologies: Transforming Our Energy Economy Robert M. Margolis National Renewable Energy Laboratory 32 nd Annual IAEE International Conference San Francisco, CA June 22,

More information

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining G. Jungmeier 1, R. Van Ree 2, E. de Jong 3, H. Jørgensen 4, P. Walsh 4, M. Wellisch

More information

Biomass for Energy and Fuel

Biomass for Energy and Fuel Biomass for Energy and Fuel Reference: Donald L. Klass, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, 1998. http://www.energy.kth.se/compedu/webcompedu/media/lectu re_notes/s1b11c2.pdf

More information

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER Biomass is a source of renewable energy which is biological material derived from living or recently living organisms such as wood, waste and alcohol fuels.

More information

Second Generation Biofuels: Economic and Policy Issues

Second Generation Biofuels: Economic and Policy Issues Second Generation Biofuels: Economic and Policy Issues Wally Tyner With Input from Farzad Taheripour March 27, 2012 Presentation Outline New data on global land use change Sources of uncertainty for second

More information

Biofuels A policy driven logistics and business challenge

Biofuels A policy driven logistics and business challenge Biofuels 2020 A policy driven logistics and business challenge Research and Innovation, Position Paper 02-2010 This is DNV DNV is a global provider of services for managing risk. Established in 1864, DNV

More information

Global Warming. Department of Chemical Engineering

Global Warming. Department of Chemical Engineering Global Warming How Can Biofuels Help? Clint Williford Department of Chemical Engineering Introduction ti Greenhouse emissions Reducing growth of GHG emissions Biofuels Why and why now? What they are? How

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Would / Does tidal power work? How does it work? In what ways is tidal power an improvement on wind and solar power?

Would / Does tidal power work? How does it work? In what ways is tidal power an improvement on wind and solar power? APES Chapter 13 Achieving Energy Sustainability Intro: Energy from the Moon? Would / Does tidal power work? How does it work? In what ways is tidal power an improvement on wind and solar power? What are

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

ABENGOA BIOENERGY NEW TECHNOLOGIES

ABENGOA BIOENERGY NEW TECHNOLOGIES ABENGOA BIOENERGY NEW TECHNOLOGIES From research and demonstration to the first commercialization plant: Abengoa Bioenergy s experience in 2nd generation bioethanol November, 2012 Carmen Millan Chacartegui

More information

STRATEGIC MARKETING FOR HEALTH CARE ORGANIZATIONS

STRATEGIC MARKETING FOR HEALTH CARE ORGANIZATIONS STRATEGIC MARKETING FOR HEALTH CARE ORGANIZATIONS Building a Customer-Driven Health System PHILIP KOTLER, JOEL SHALOWITZ, AND ROBERT J. STEVENS STRATEGIC MARKETING FOR HEALTH CARE ORGANIZATIONS STRATEGIC

More information

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Sanjeev K. Gajjela and Philip H. Steele Department of Forest Products College of Forest Resources Mississippi State University

More information

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) Author: NPCS Board of Consultants & Engineers Format: Hardcover ISBN: 9788178331584 Code: NI289 Pages: 417 Price:

More information

Process Economics Program

Process Economics Program IHS Chemical Process Economics Program Report 148C Synthesis Gas Production from Coal and Petroleum Coke Gasification By Jamie Lacson IHS Chemical agrees to assign professionally qualified personnel to

More information

Managing Exports Navigating the Complex Rules, Controls, Barriers, and Laws Frank Reynolds

Managing Exports Navigating the Complex Rules, Controls, Barriers, and Laws Frank Reynolds Managing Exports Navigating the Complex Rules, Controls, Barriers, and Laws Frank Reynolds JOHN WILEY & SONS, INC. Managing Exports Managing Exports Navigating the Complex Rules, Controls, Barriers,

More information

OPERATIONAL REVIEW WORKBOOK Case Studies, Forms, and Exercises Rob Reider John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Toronto Singap

OPERATIONAL REVIEW WORKBOOK Case Studies, Forms, and Exercises Rob Reider John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Toronto Singap OPERATIONAL REVIEW WORKBOOK Case Studies, Forms, and Exercises Rob Reider John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Toronto Singapore OPERATIONAL REVIEW WORKBOOK OPERATIONAL REVIEW

More information

BEST PRACTICES IN PLANNING AND PERFORMANCE MANAGEMENT RADICALLY RETHINKING MANAGEMENT FOR A VOLATILE WORLD. Third Edition. David A. J.

BEST PRACTICES IN PLANNING AND PERFORMANCE MANAGEMENT RADICALLY RETHINKING MANAGEMENT FOR A VOLATILE WORLD. Third Edition. David A. J. BEST PRACTICES IN PLANNING AND PERFORMANCE MANAGEMENT RADICALLY RETHINKING MANAGEMENT FOR A VOLATILE WORLD Third Edition David A. J. Axson Best Practices in Planning and Performance Management Best Practices

More information

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 22.033 Biofuels Presentation Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 1 Overview Our Goal House of Quality Comparison of Biomass Sources Possible Uses & Processes Comparison of Inputs Comparison

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

Biofuels and Biorefineries

Biofuels and Biorefineries Biofuels and Biorefineries Stella Bezergianni, Angelos Lappas, and Iacovos Vasalos Laboratory of Environmental Fuels and Hydrocarbons (LEFH) (www.cperi.certh.gr) Center of Research & Technology Hellas

More information

Biofuels Research at the University of Washington

Biofuels Research at the University of Washington Biofuels Research at the University of Washington 15 July 2008 Rick Gustafson Paper Science & Engineering College of Forest Resource University of Washington UW biofuels research agenda Vision: Cost effective

More information

Sarbanes-Oxley and the New Internal Auditing Rules

Sarbanes-Oxley and the New Internal Auditing Rules Sarbanes-Oxley and the New Internal Auditing Rules ROBERT R. MOELLER John Wiley & Sons, Inc. Sarbanes-Oxley and the New Internal Auditing Rules Sarbanes-Oxley and the New Internal Auditing Rules ROBERT

More information

Chemical Process Design / Diseño de Procesos Químicos

Chemical Process Design / Diseño de Procesos Químicos Chemical Process Design / Diseño de Procesos Químicos Design Project. DefiniDon of the Design Project Javier R. Viguri Fuente Eva Cifrian Bemposta Department of Chemistry and Process and Resource Engineering

More information

Sugar Industry Restructuring by Implementing Biorefinery Technology

Sugar Industry Restructuring by Implementing Biorefinery Technology Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce

More information

Chemistry of Fossil Fuels and Biofuels

Chemistry of Fossil Fuels and Biofuels Chemistry of Fossil Fuels and Biofuels HAROLD SCHOBERT The Pennsylvania State University and North-West University CAMBRID GE UNIVERSITY PRESS Contents Preface page xv Acknowledgments xvii Acknowledgments

More information

Diagnosing and Changing Organizational Culture

Diagnosing and Changing Organizational Culture Diagnosing and Changing Organizational Culture To download PDFs of the OCAI (Organizational Culture Assessment Instrument) and the MSAI (Management Skills Assessment Instrument) please go to www.josseybass.com/go/cameron.

More information

Energy-Crop Gasification

Energy-Crop Gasification Energy-Crop Gasification R. Mark Bricka Mississippi State University Mississippi State, MS Biomass may be obtained from many sources. Already mentioned at this conference are switchgrass, corn stover,

More information

RENEWABLE ENERGY IN THE PACIFIC NORTHWEST

RENEWABLE ENERGY IN THE PACIFIC NORTHWEST RENEWABLE ENERGY IN THE PACIFIC NORTHWEST Renewable energy comes from natural sources that are continually and sustainably replenished such as the sun, the flow of water, or other natural processes. By

More information

Summary & Conclusion

Summary & Conclusion Summary & Conclusion CHAPTER 6 SUMMARY & CONCLUSIONS Concerns regarding the soaring cost of gasoline and the depleting petroleum reserves have led to an urge for a sustainable alternative to gasoline such

More information

MANAGEMENT ACCOUNTING BEST PRACTICES

MANAGEMENT ACCOUNTING BEST PRACTICES MANAGEMENT ACCOUNTING BEST PRACTICES A Guide for the Professional Accountant STEVEN M. BRAGG John Wiley & Sons, Inc. Management Accounting Best Practices A Guide for the Professional Accountant MANAGEMENT

More information

Future U.S. Biofuels and Biomass Demand Uncertainty Reigns. Wally Tyner

Future U.S. Biofuels and Biomass Demand Uncertainty Reigns. Wally Tyner Agricultural Outlook Forum Presented: February 24-25, 2011 U.S. Department of Agriculture Future U.S. Biofuels and Biomass Demand Uncertainty Reigns Wally Tyner Future U.S. Biofuels and Biomass Demand

More information

Executive Compensation Best Practices

Executive Compensation Best Practices Executive Compensation Best Practices Frederick D. Lipman Steven E. Hall John Wiley & Sons, Inc. Executive Compensation Best Practices Executive Compensation Best Practices Frederick D. Lipman Steven

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Singfoong Cheah Daniel Carpenter Calvin Feik Shealyn Malone National Renewable Energy Laboratory Golden,

More information

Business Intelligence Competency Centers A Team Approach to Maximizing Competitive Advantage

Business Intelligence Competency Centers A Team Approach to Maximizing Competitive Advantage Business Intelligence Competency Centers A Team Approach to Maximizing Competitive Advantage Gloria J. Miller Dagmar Bräutigam Stefanie V. Gerlach John Wiley & Sons, Inc. Business Intelligence Competency

More information

What is Bioenergy? William Robinson B9 Solutions Limited

What is Bioenergy? William Robinson B9 Solutions Limited What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly

More information

2.2 Conversion Platforms

2.2 Conversion Platforms 2.2 Conversion Platforms The strategic goal of the conversion element is to develop technologies for converting feedstocks into cost-competitive commodity liquid fuels, like ethanol, as well as bioproducts

More information

Cellulosic Biomass Chemical Pretreatment Technologies

Cellulosic Biomass Chemical Pretreatment Technologies Life-changing Research and Development Cellulosic Biomass Chemical Pretreatment Technologies September 6, 2007 Keith Pauley Keith.Pauley@matricresearch.com 800-611-2296 Chemical and Environmental Technologies

More information

CORPORATE FINANCE WORKBOOK

CORPORATE FINANCE WORKBOOK CORPORATE FINANCE WORKBOOK CFA Institute is the premier association for investment professionals around the world, with over 101,000 members in 134 countries. Since 1963 the organization has developed

More information

Enzymatic Conversion of Biomass to Ethanol

Enzymatic Conversion of Biomass to Ethanol Enzymatic Conversion of Biomass to Ethanol Alfalfa/Corn Rotations for Sustainable Cellulosic Biofuels Production June 29-30, 2010 Pioneer Hi-Bred Carver Center Johnston, IA 2 Genencor, a Danisco Division

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches Thermal Conversion of Animal Manure to Biofuel Samy Sadaka, Ph.D., P.E., P. Eng. Assistant Professor - Extension Engineer University of Arkansas Division of Agriculture - Cooperative Extension Service

More information

JOHN BASCHAB JON PIOT

JOHN BASCHAB JON PIOT T H E PROFESSIONAL SERVICES FIRM BIBLE JOHN BASCHAB JON PIOT John Wiley & Sons, Inc. T H E PROFESSIONAL SERVICES FIRM BIBLE T H E PROFESSIONAL SERVICES FIRM BIBLE JOHN BASCHAB JON PIOT John Wiley & Sons,

More information

Utilization of residues as bioethanol feedstock Case of Turkey

Utilization of residues as bioethanol feedstock Case of Turkey Utilization of residues as bioethanol feedstock Case of Turkey Asiye Gul BAYRAKCI OZDINGIS, Gunnur KOCAR Ege University Institute of Solar Energy Biomass Energy Systems and Technology Center - BESTMER

More information

Chapter 14 area strip mining contour strip mining high-grade ore low-grade ore mineral mineral resource mountaintop removal open-pit mining

Chapter 14 area strip mining contour strip mining high-grade ore low-grade ore mineral mineral resource mountaintop removal open-pit mining Vocabulary: Directions: Review key vocabulary, words may appear in quizzes and/or tests. You are not required to write the definitions but are encouraged to review them online Chapter 14 area strip mining

More information

DESIGN OF WATER SUPPLY PIPE NETWORKS

DESIGN OF WATER SUPPLY PIPE NETWORKS DESIGN OF WATER SUPPLY PIPE NETWORKS DESIGN OF WATER SUPPLY PIPE NETWORKS Prabhata K. Swamee Ashok K. Sharma Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons,

More information

The National Bioenergy Center and Biomass R&D Overview

The National Bioenergy Center and Biomass R&D Overview The National Bioenergy Center and Biomass R&D verview Dr. Michael A. Pacheco Director of National Bioenergy Center National Renewable Energy Laboratory May 20, 2004 National Bioenergy Center Announced

More information

Trash into Gas: Powering Sustainable Transportation by Plants

Trash into Gas: Powering Sustainable Transportation by Plants Trash into Gas: Powering Sustainable Transportation by Plants Jaclyn D. DeMartini Dr. Charles E. Wyman University of California Chemical and Environmental Engineering Department Center for Environmental

More information

Sarbanes-Oxley. Guide for Finance and Information Technology Professionals SANJAY ANAND. John Wiley & Sons, Inc.

Sarbanes-Oxley. Guide for Finance and Information Technology Professionals SANJAY ANAND. John Wiley & Sons, Inc. Sarbanes-Oxley Guide for Finance and Information Technology Professionals SANJAY ANAND John Wiley & Sons, Inc. Sarbanes-Oxley Guide for Finance and Information Technology Professionals Sarbanes-Oxley

More information

Civil Engineer s Handbook of Professional Practice

Civil Engineer s Handbook of Professional Practice Civil Engineer s Handbook of Professional Practice Civil Engineer s Handbook of Professional Practice Karen Lee Hansen and Kent E. Zenobia John Wiley & Sons, Inc. This book is printed on acid-free paper.

More information

ECN Research and Development in bioenergy

ECN Research and Development in bioenergy ECN Research and Development in bioenergy June 2014, Environmental Day, Sao Paulo Tatjana Komissarova, Corporate business developer www.ecn.nl BRAZIL Brazil is nowadays the largest and BEST bioethanol

More information

Bioethanol. CE 521 Shinnosuke Onuki

Bioethanol. CE 521 Shinnosuke Onuki Bioethanol CE 521 Shinnosuke Onuki 1. Introduction Bioethanol A biofuel produced by the fermentation of plants rich in sugar/starch renewable resources impact on air quality due to cleaner combustion reduced

More information

Energetic application of bioethanol from biomass

Energetic application of bioethanol from biomass 6 th 12 st May 2018, Ankara ERASMUS + IESRES INNOVATIVE EUROPEAN STUDIES on RENEWABLE ENERGY SYSTEMS Energetic application of bioethanol from biomass Alessandro Di Michele NiPS Lab- Dipartimento di Fisica

More information

DONG Energy Group. Goal - Turning from Fossil fuel to renewable energy 2020: 50/ : 15/85

DONG Energy Group. Goal - Turning from Fossil fuel to renewable energy 2020: 50/ : 15/85 Kalundborg Large Scale Demonstration Plant DONG Energy Group 2 DONG Energy Group Goal - Turning from Fossil fuel to renewable energy Today: 85/15 2020: 50/50 2050: 15/85 How? Wind Biomass = Biogas / Ethanol

More information

UNIT 5. Biomass energy

UNIT 5. Biomass energy UNIT 5 1 Biomass energy SYLLABUS 5.1 Types of Biomass Energy Sources 5.2 Energy content in biomass of different types 5.3 Types of Biomass conversion processes 5.4 Biogas production 2 WHAT IS BIOMASS?

More information

Reducing enzyme cost of cellulosic biofuels production

Reducing enzyme cost of cellulosic biofuels production Reducing enzyme cost of cellulosic biofuels production J. van Hal February 2015 ECN-L--15-005 Reducing enzyme cost of cellulosic biofuels production Jaap W. van Hal, W. J.J. Huijgen and A.T. Smit The Energy

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

P1: OTA/XYZ P2: ABC JWBT502-fm JWBT502-Bern May 5, :14 Printer Name: To Come INVESTING IN ENERGY i

P1: OTA/XYZ P2: ABC JWBT502-fm JWBT502-Bern May 5, :14 Printer Name: To Come INVESTING IN ENERGY i INVESTING IN ENERGY Since 1996, Bloomberg Press has published books for financial professionals on investing, economics, and policy affecting investors. Titles are written by leading practitioners and

More information

Overview of renewable energy

Overview of renewable energy Overview of renewable energy Outline What is renewable energy? Renewable energy sources Renewable energy technologies: - Characteristics - Uses What is renewable energy? Energy that doesn t run out! Energy

More information

For more information on any of the above titles, please visit

For more information on any of the above titles, please visit ESSENTIALS of XBRL Financial Reporting in the 21st Century Bryan Bergeron John Wiley & Sons, Inc. ESSENTIALS of XBRL Essentials Series The Essentials Series was created for busy business advisory and

More information

REALIZING RENEWABLE ENERGY POTENTIAL

REALIZING RENEWABLE ENERGY POTENTIAL REALIZING RENEWABLE ENERGY POTENTIAL BY Patrick Hirl, PE Renewable natural gas (RNG) is a universal fuel that enhances energy supply diversity; uses municipal, agricultural and commercial organic waste;

More information

Technologies to Mitigate Climate Change

Technologies to Mitigate Climate Change IOM Roundtable on Environmental Health, San Francisco September 11, 2007 Stanford University Global Climate & Energy Project Technologies to Mitigate Climate Change Lynn Orr Stanford University The Punchlines

More information

Integrated Florida Bio-Energy Production with Carbon Capture and Sequestration

Integrated Florida Bio-Energy Production with Carbon Capture and Sequestration UNIVERSITY OF CENTRAL FLORIDA Integrated Florida Bio-Energy Production with Carbon Capture and Sequestration PI: Ali T. Raissi Co-PI: Nazim Muradov Research Team: Amit Gujar, Jong Baik, Nathaniel Garceau

More information

ClearFuels Technology Inc.

ClearFuels Technology Inc. ClearFuels Technology Inc. Hawai i Energy Policy Forum Wednesday, October 12, 2005 -- 10:00 a.m. - 2:30 p.m. Production of Ethanol from Biomass Enabling Highly Efficient Low Cost Sustainable Energy Production

More information

Accounts Payable Best Practices Mary S. Schaeffer Executive Editor IOMA s Report on Managing Accounts Payable Co-creator The Accounts Payable Certification Programs John Wiley & Sons, Inc. Accounts Payable

More information

The Executive Director s GUIDE

The Executive Director s GUIDE JOSSEY-BASS NONPROFIT GUIDEBOOK S E R I E S The Executive Director s GUIDE TO THRIVING AS A NONPROFIT LEADER SECOND EDITION SECOND EDITION MIM CARLSON MARGARET DONOHOE The Executive Director s Guide to

More information

GETTING STARTED IN PERSONAL AND EXECUTIVE COACHING

GETTING STARTED IN PERSONAL AND EXECUTIVE COACHING GETTING STARTED IN PERSONAL AND EXECUTIVE COACHING How to Create a Thriving Coaching Practice Stephen G. Fairley Chris E. Stout John Wiley & Sons, Inc. GETTING STARTED IN PERSONAL AND EXECUTIVE COACHING

More information

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Thomas D. Foust, Ph.D., P.E. Director, National Advanced Fuels Consortium NREL Bioenergy Center December 9, 2013 NREL is a national laboratory of the

More information

Thermochemical conversion routes of lignocellulosic biomass

Thermochemical conversion routes of lignocellulosic biomass Thermochemical conversion routes of lignocellulosic biomass S. GERBINET and A. LEONARD saicha.gerbinet@ulg.ac.be University of Liège LABORATORY of CHEMICAL ENGINEERING Processes and Sustainable development

More information

Biofuels: Renewable Transportation Fuels from Biomass

Biofuels: Renewable Transportation Fuels from Biomass National Renewable Energy Laboratory Biofuels: Renewable Transportation Fuels from Biomass Cynthia Riley Biotechnology Division for Fuels and Chemicals National Bioenergy Center Utility Federal Technology

More information

ENTERPRISE PERFORMANCE MANAGEMENT DONE RIGHT

ENTERPRISE PERFORMANCE MANAGEMENT DONE RIGHT ENTERPRISE PERFORMANCE MANAGEMENT DONE RIGHT ENTERPRISE PERFORMANCE MANAGEMENT DONE RIGHT AN OPERATING SYSTEM FOR YOUR ORGANIZATION Ron Dimon Copyright 2013 by John Wiley & Sons, Inc. All rights reserved.

More information

marketing 3.0 PHILIP KOTLER From Products to Customers to the Human Spirit JOHN WILEY & SONS, INC.

marketing 3.0 PHILIP KOTLER From Products to Customers to the Human Spirit JOHN WILEY & SONS, INC. marketing 3.0 marketing 3.0 From Products to Customers to the Human Spirit PHILIP KOTLER HERMAWAN KARTAJAYA IWAN SETIAWAN JOHN WILEY & SONS, INC. Copyright C by 2010 by Philip Kotler, Hermawan Kartajaya,

More information