Quantitative analysis of recombination in YFP and CFP gene of FRET biosensor induced by lentiviral or retroviral gene transfer.

Size: px
Start display at page:

Download "Quantitative analysis of recombination in YFP and CFP gene of FRET biosensor induced by lentiviral or retroviral gene transfer."

Transcription

1 Supplementary Information: Quantitative analysis of recombination in and gene of FRET biosensor induced by lentiviral or retroviral gene transfer. Akira T. Komatsubara, Michiyuki Matsuda,, and Kazuhiro Aoki 3,* Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto , Japan Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto , Japan 3 Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto , Japan

2 Supplementary Figure S FIGURE S Multiple alignment of nucleotide sequences in and genes. DNA sequences of e0ypet, h0ypet, nturquoise-gl, and TFP were aligned to highlight their sequence identity with the boxed area.

3 Supplementary Figure S FIGURE S Comparison of fluorescence intensities among chimeric GFP variants. (A) An alignment of amino acid sequences in YPet and nturquoise-gl. (B) Fluorescence intensities of h0ypet, chimeric GFP variants and were measured in HeLa cells transiently expressing the indicated biosensors (Left). Fluorescence intensities of channel were normalized by fluorescence intensities of channel. The averaged / ratios are represented with S.E. (N > 0 cells).

4 (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) (a.u) Supplementary Figure S3 Gene delivery: HIV-based lentivirus, Cell: HeLa A B C D h0 h7-e h0-e0 h-e (a.u.) 0 00 (a.u.) 0 00 (a.u.) 0 00 (a.u.) E F G H e0 e7-h e0-h0 e-h (a.u.) 0 00 (a.u.) 0 (a.u.) 0 00 (a.u.) Gene delivery: MuLV-based retrovirus, Cell: HeLa I J K L h0 h7-e h0-e0 h-e (a.u.) (a.u.) (a.u.) (a.u.) M N O P e0 e7-h e0-h0 e-h (a.u.) (a.u.) (a.u.) (a.u.) FIGURE S3 Recombination between and genes by lentiviral or retroviral gene transfer in HeLa cells. HeLa cells were infected with lentivirus (A-H) or retrovirus (I-P) encoding 8 different FRET biosensors as shown in the upper panel. At least 4 days after infection, the cells were imaged with an epi-fluorescence microscope. The average fluorescence intensities of and are represented as a log-log plot. Each dot corresponds to a HeLa cell. Three hundred cells were analyzed from two independent experiments. Red lines are the fitted line with the e0ypet data. Orange and cyan arrowheads indicate the T03Y and Y66W mutations, respectively.

5 (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) Supplementary Figure S4 Gene delivery: Lipofection with lentivirus plasmid, Cell: HeLa A B C D h0 h7-e h0-e0 h-e (a.u.) 0 00 (a.u.) 0 00 (a.u.) 0 00 (a.u.) E F G H e0 e7-h e0-h0 e-h (a.u.) 0 00 (a.u.) 0 00 (a.u.) 0 00 (a.u.) Gene delivery: Lipofection with retrovirus plasmid, Cell: HeLa I J K L h0 h7-e h0-e0 h-e (a.u.) (a.u.) (a.u.) (a.u.) M N O P e0 e7-h e0-h0 e-h (a.u.) (a.u.) (a.u.) (a.u.) FIGURE S4 Transient expression of and in HeLa cells with lipofection. HeLa cells were transfected with lentiviral (A-H) or retroviral (I-P) vector plasmids encoding 8 different FRET biosensors as shown in the upper panel. At least days after transfection, the cells were imaged with an epi-fluorescence microscope. The average fluorescence intensities of and are represented as a log-log plot. Each dot corresponds to a HeLa cell. Three hundred cells were analyzed from two independent experiments. Red lines are the fitted line with the e0ypet data. Orange and cyan arrowheads indicate the T03Y and Y66W mutation, respectively.

6 Counts Supplementary Figure S A h0ypet ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGG 0 Sequence Data ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGG 0 nturquoise-gl ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGG 0 h0ypet GCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTTCTATGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGGGCTA 00 Sequence Data GCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTTCTATGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGGGCTA 00 nturquoise-gl GCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGTCCTG 00 h0ypet 0 CGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC 300 Sequence Data 0 CGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC 300 nturquoise-gl 0 GGGCGTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC 300 h0ypet 30 TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGG 400 Sequence Data 30 TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGG 400 nturquoise-gl 30 TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGG 400 h0ypet 40 ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAA 00 Sequence Data 40 ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAA 00 nturquoise-gl 40 ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACATCAGCGGGAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAA 00 h0ypet 0 GATCCGCCACAACATCGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC 600 Sequence Data 0 GATCCGCCACAACATCGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC 600 nturquoise-gl 0 GATCCGCCACAACATCGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC 600 h0ypet 60 TACCTGAGCTACCAGTCCGCCCTGTTCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCCTGACCGCCGCCGGGATCACTGAGGGCA 700 Sequence Data 60 TACCTGAGCACCCAGTCCGCCTTAAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCTTGACCGCCGCCGGGATCACTCTCGGCA 700 nturquoise-gl 60 TACCTGAGCACCCAGTCCGCCTTAAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCTTGACCGCCGCCGGGATCACTCTCGGCA 700 h0ypet 70 TGAACGAGCTGTAC 74 Sequence Data 70 TGGACGAGCTG 7 nturquoise-gl 70 TGGACGAGCTG 7 B YPet nturquoise-gl aa aa Length (bp) Counts F47L V68L F46L T6G Y66W (99-0 bp) N46I H48G T03Y (6-6 bp) H3F S08F D34N 38 aa 37 aa C 0 y = 0.039x R² = Length (bp) FIGURE S Verification of the recombination. (A) An example of results of DNA sequencing in recombined YPet and nturquoise-gl genes. A49 cells infected with h0ypet-carrying lentivirus were sorted by FACS depending on fluorescence, followed by genomic DNA extraction, PCR amplification of the recombined genes, and sequencing. Nucleotide sequences of wild-type h0ypet, a representative recombined DNA sequence, and wild-type nturquoise-gl are aligned with black lines, which enclose identical nucleotides. The red line encloses the region where the recombination has

7 occurred. *, synonymous mutation. (B) Schematic representation of the difference between YPet and nturquoise-gl amino acids. (Upper) The dotted lines represent different amino acid residues between YPet and nturquoise-gl. (Lower) We analyzed chimeric GFP and variants, in which Y66 amino acid was conserved. Red regions indicate potential recombination site. Length indicates the number of identical DNA sequence for each potential recombination sites. Counts indicate the number of recombined GFP or variants that have been generated as a result of recombination in between the identical DNA sequence. (C) The number of recombined GFP or variants are plotted as a function of the number of each identical DNA sequence, in which the recombination has occurred.

8 Supplementary Figure S6 r : recombination rate (/bp) (, ) = (, ) (, ) = (0, ) (, ) = (0.08, 0) (, ) = (0., 0) (, ) = (0.9, 0) (, ) = (, 0) Y66W L68V N46T (, ) = (0.6, 0) H48G T03Y 00 0 (0, 0.08 ~) (, 0) 0 00 (, ) = (, ) 00 0 ave SD Noise 0 00 Slope ave ave SD ave SD FIGURE S6 Scheme of the mathematical model of recombination between and genes. (Upper panel) Schematic representation of the recombination of and genes. Red lines indicate the critical amino acid residues for the substitution of and from GFP, Y66W and T03Y, respectively. Black arrowheads indicate the position of recombination. Of note, fluorescence intensity of chimeric GFP genes is changed in accord with the recombination sites (Supplementary Fig. SB). (Lower panels) The distribution of and intensities are illustrated in a log-log plot. The blue, orange, and green areas represent cells expressing,, or both, respectively (left). To recapitulate the experimental data, the indicated 9 parameters were extracted from the experimental data set (right).

9 Supplementary Figure S7 Computer simulation, Gene delivery: HIV-based retrovirus, Cell: A49 A h0 B h7-e C h0-e0 D h-e7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000 E e0 F e7-h G e0-h0 H e-h7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000 Computer simulation, Gene delivery: HIV-based lentivirus, Cell: HeLa I h0 J h7-e K h0-e0 L h-e7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000 M e0 N e7-h O e0-h0 P e-h7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000 Computer simulation, Gene delivery: MuLV-based retrovirus, Cell: HeLa Q h0 R h7-e S h0-e0 T h-e7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000 U e0 V e7-h W e0-h0 X e-h7,000,000,000,000,000,000,000, ,000 0,000 0,000 0,000

10 FIGURE S7 Computer simulation of the recombination between and genes. The recombination of and genes in A49 cells infected with the indicated retrovirus (A-H) or HeLa cells infected with the lentivirus (I-P) or retrovirus (Q-X) was simulated by computer with the recombination rates, which showed maximal likelihood estimation (Table ). To reproduce the experimental data, 9 parameters were extracted from the experimental data set in Figure 3, and Supplementary Figure S3 (see Supplementary Figure S6 and the Methods for details). Red lines are the fitted line with the e0ypet data. Orange and cyan arrowheads indicate the T03Y and Y66W mutations, respectively.

11 Log likelihood Log likelihood Log likelihood Log likelihood Supplementary Figure S8 A Gene delivery: HIV-based lentivirus Cell: A49 B Gene delivery: MuLV-based retrovirus 4 Cell: A Recombination rate, r (/bp) Recombination rate, r (/bp) C -0.9 Gene delivery: HIV-based lentivirus 4 Cell: HeLa D Gene delivery: MuLV-based retrovirus - 4 Cell: HeLa Recombination rate, r (/bp) Recombination rate, r (/bp) FIGURE S8 Maximal log-likelihood estimation of recombination rate. Log-likelihood values were calculated as described in Methods, and plotted as a function of recombination rate (r) in A49 cells infected with lentivirus (A) or retrovirus (B), or in HeLa cells infected with lentivirus (C) or retrovirus (D). The red circles indicate maximal log-likelihood values.

Supplementary Figure 1. Isolation of GFPHigh cells.

Supplementary Figure 1. Isolation of GFPHigh cells. Supplementary Figure 1. Isolation of GFP High cells. (A) Schematic diagram of cell isolation based on Wnt signaling activity. Colorectal cancer (CRC) cell lines were stably transduced with lentivirus encoding

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

Multiplex Fluorescence Assays for Adherence Cells without Trypsinization

Multiplex Fluorescence Assays for Adherence Cells without Trypsinization Multiplex Fluorescence Assays for Adherence Cells without Trypsinization The combination of a bright field and three fluorescent channels allows the Celigo to perform many multiplexed assays. A gating

More information

SUPPLEMENTAL MATERIALS

SUPPLEMENTAL MATERIALS SUPPLEMENL MERILS Eh-seq: RISPR epitope tagging hip-seq of DN-binding proteins Daniel Savic, E. hristopher Partridge, Kimberly M. Newberry, Sophia. Smith, Sarah K. Meadows, rian S. Roberts, Mark Mackiewicz,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1: Vector maps of TRMPV and TRMPVIR variants. Many derivatives of TRMPV have been generated and tested. Unless otherwise noted, experiments in this paper use

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

jetprime in vitro DNA & sirna transfection reagent PROTOCOL

jetprime in vitro DNA & sirna transfection reagent PROTOCOL jetprime in vitro DNA & sirna transfection reagent PROTOCOL DESCRIPTION jetprime is a novel powerful transfection reagent based on a polymer formulation manufactured at Polyplus-transfection. jetprime

More information

Supplementary Figure 1: sgrna library generation and the length of sgrnas for the functional screen. (a) A diagram of the retroviral vector for sgrna

Supplementary Figure 1: sgrna library generation and the length of sgrnas for the functional screen. (a) A diagram of the retroviral vector for sgrna Supplementary Figure 1: sgrna library generation and the length of sgrnas for the functional screen. (a) A diagram of the retroviral vector for sgrna expression. It contains a U6-promoter-driven sgrna

More information

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH

REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH EHRS Date Received: Reg. Doc. No.: REGISTRATION DOCUMENT FOR RECOMBINANT DNA RESEARCH Principal Investigator: Penn ID#: Position Title: School: Department: Mailing Address: Mail Code: Telephone: FAX: E-mail:

More information

Supplementary Figure 1

Supplementary Figure 1 number of cells, normalized number of cells, normalized number of cells, normalized Supplementary Figure CD CD53 Cd3e fluorescence intensity fluorescence intensity fluorescence intensity Supplementary

More information

THE DELIVERY EXPERTS PROTOCOL

THE DELIVERY EXPERTS PROTOCOL THE DELIVERY EXPERTS jetprime in vitro DNA & sirna transfection reagent PROTOCOL DESCRIPTION jetprime is a novel powerful molecule based on a polymer formulation manufactured at Polyplustransfection. jetprime

More information

(Hadlock, Journal of Virology, 2000), (Keck, Journal of Virology, 2008) CBH-5 Domain B 412, 416, 417, 418, 420, 421, 422, 423, 483, 484, 485, 488,

(Hadlock, Journal of Virology, 2000), (Keck, Journal of Virology, 2008) CBH-5 Domain B 412, 416, 417, 418, 420, 421, 422, 423, 483, 484, 485, 488, Supplementary Table. mabs analyzed mab Antigenic Critical Binding Residues by Citations Domains Alanine Scanning 2 CBH-4B Domain A NA (Hadlock, Journal of Virology, 2), (Keck, Journal of Virology, 24)

More information

NEW! CHOgro Expression System

NEW! CHOgro Expression System NEW! CHOgro Expression System At Mirus Bio, we know it s all about expression. Introducing the new CHOgro Expression System, a transient transfection platform that finally gets high protein titers with

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Synthetic Biology. Sustainable Energy. Therapeutics Industrial Enzymes. Agriculture. Accelerating Discoveries, Expanding Possibilities. Design.

Synthetic Biology. Sustainable Energy. Therapeutics Industrial Enzymes. Agriculture. Accelerating Discoveries, Expanding Possibilities. Design. Synthetic Biology Accelerating Discoveries, Expanding Possibilities Sustainable Energy Therapeutics Industrial Enzymes Agriculture Design Build Generate Solutions to Advance Synthetic Biology Research

More information

A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish

A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish Developmental Cell Supplemental Information A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish Julien Ablain, Ellen M. Durand, Song Yang, Yi Zhou, and Leonard I. Zon % larvae

More information

Lecture 3 Mutagens and Mutagenesis. 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA

Lecture 3 Mutagens and Mutagenesis. 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA Lecture 3 Mutagens and Mutagenesis 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA 2. Mutagenesis A. Screen B. Selection C. Lethal mutations Read: 508-514 Figs:

More information

Color-Switch CRE recombinase stable cell line

Color-Switch CRE recombinase stable cell line Color-Switch CRE recombinase stable cell line Catalog Number Product Name / Description Amount SC018-Bsd CRE reporter cell line (Bsd): HEK293-loxP-GFP- RFP (Bsd). RFP" cassette with blasticidin antibiotic

More information

CHAPTER 9 DNA Technologies

CHAPTER 9 DNA Technologies CHAPTER 9 DNA Technologies Recombinant DNA Artificially created DNA that combines sequences that do not occur together in the nature Basis of much of the modern molecular biology Molecular cloning of genes

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Supplementary Information Design of small molecule-responsive micrornas based on structural requirements for Drosha processing

Supplementary Information Design of small molecule-responsive micrornas based on structural requirements for Drosha processing Supplementary Information Design of small molecule-responsive micrornas based on structural requirements for Drosha processing Chase L. Beisel, Yvonne Y. Chen, Stephanie J. Culler, Kevin G. Hoff, & Christina

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Origin use and efficiency are similar among WT, rrm3, pif1-m2, and pif1-m2; rrm3 strains. A. Analysis of fork progression around confirmed and likely origins (from cerevisiae.oridb.org).

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Nature Structural and Molecular Biology: doi: /nsmb.2937

Nature Structural and Molecular Biology: doi: /nsmb.2937 Supplementary Figure 1 Multiple sequence alignment of the CtIP N-terminal domain, purified CtIP protein constructs and details of the 2F o F c electron density map of CtIP-NTD. (a) Multiple sequence alignment,

More information

over time using live cell microscopy. The time post infection is indicated in the lower left corner.

over time using live cell microscopy. The time post infection is indicated in the lower left corner. Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary Table Title of file for HTML: Supplementary Movie 1 Description: Fusion of NBs. BSR cells were infected

More information

Supplementary information, Figure S1

Supplementary information, Figure S1 Supplementary information, Figure S1 (A) Schematic diagram of the sgrna and hspcas9 expression cassettes in a single binary vector designed for Agrobacterium-mediated stable transformation of Arabidopsis

More information

Retro-X qrt-pcr Titration Kit. User Manual. User Manual. Catalog No PT (091613)

Retro-X qrt-pcr Titration Kit. User Manual. User Manual. Catalog No PT (091613) User Manual Retro-X qrt-pcr Titration Kit User Manual United States/Canada 800.662.2566 Asia Pacific +1.650.919.7300 Europe +33.(0)1.3904.6880 Japan +81.(0)77.543.6116 Clontech Laboratories, Inc. A Takara

More information

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Supplementary Material

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Supplementary Material Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions Joshua N. Burton 1, Andrew Adey 1, Rupali P. Patwardhan 1, Ruolan Qiu 1, Jacob O. Kitzman 1, Jay Shendure 1 1 Department

More information

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr.

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. MIT Department of Biology 7.01: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel iv) Would Xba I be useful for cloning? Why or why not?

More information

TRANSFEX - SUPERIOR GENE EXPRESSION FOR HARD-TO-TRANSFECT CELL TYPES. Kevin Grady Product Line Business Manager ASCB Vendor Showcase Dec.

TRANSFEX - SUPERIOR GENE EXPRESSION FOR HARD-TO-TRANSFECT CELL TYPES. Kevin Grady Product Line Business Manager ASCB Vendor Showcase Dec. TRANSFEX - SUPERIOR GENE EXPRESSION FOR HARD-TO-TRANSFECT CELL TYPES Kevin Grady Product Line Business Manager ASCB Vendor Showcase Dec. 15, 2013 Outline Overview of transfection TransfeX Primary/hTERT

More information

NAME TA SEC Problem Set 4 FRIDAY October 15, Answers to this problem set must be inserted into the box outside

NAME TA SEC Problem Set 4 FRIDAY October 15, Answers to this problem set must be inserted into the box outside MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel NAME TA SEC 7.012 Problem Set 4 FRIDAY October 15,

More information

Figure S1. Figure S2. Figure S3 HB Anti-FSP27 (COOH-terminal peptide) Ab. Anti-GST-FSP27(45-127) Ab.

Figure S1. Figure S2. Figure S3 HB Anti-FSP27 (COOH-terminal peptide) Ab. Anti-GST-FSP27(45-127) Ab. / 36B4 mrna ratio Figure S1 * 2. 1.6 1.2.8 *.4 control TNFα BRL49653 Figure S2 Su bw AT p iw Anti- (COOH-terminal peptide) Ab Blot : Anti-GST-(45-127) Ab β-actin Figure S3 HB2 HW AT BA T Figure S4 A TAG

More information

TransIT -Lenti Transfection Reagent

TransIT -Lenti Transfection Reagent Quick Reference Protocol, SDS and Certificate of Analysis available at mirusbio.com/6600 INTRODUCTION Lentivirus is an enveloped, single-stranded RNA virus from the Retroviridae family capable of infecting

More information

Antibiotic Resistance: Ampicillin Bacterial Backbone: pbluescriptksii(+), Agilent Technologies

Antibiotic Resistance: Ampicillin Bacterial Backbone: pbluescriptksii(+), Agilent Technologies G0656 pfiv3.2rsvmcs Coordinates Plasmid Features 1-682 CMV/5 LTR hybrid 958-1468 Partial Gag 1494-1653 Central Polypurine Tract 1695-2075 RSV Promoter 2104-2222 Multiple Cloning Sites 2244-2839 WPRE 2868-3009

More information

Supplementary Material. Manuscript title: Cross-immunity and community structure of a multiple-strain pathogen in the

Supplementary Material. Manuscript title: Cross-immunity and community structure of a multiple-strain pathogen in the Supplementary Material Manuscript title: Cross-immunity and community structure of a multiple-strain pathogen in the tick vector Description of the primers used in the second PCR: The forward and the reverse

More information

Orflo Application Brief 3 /2017 GFP Transfection Efficiency Monitoring with Orflo s Moxi GO Next Generation Flow Cytometer. Introduction/Background

Orflo Application Brief 3 /2017 GFP Transfection Efficiency Monitoring with Orflo s Moxi GO Next Generation Flow Cytometer. Introduction/Background Introduction/Background Cell transfection and transduction refer to an array of techniques used to introduce foreign genetic material, or cloning vectors, into cell genomes. The application of these methods

More information

Color-Switch CRE Reporter Stable Cell Line

Color-Switch CRE Reporter Stable Cell Line Color-Switch CRE Reporter Stable Cell Line Catalog Number SC018-Bsd SC018-Neo SC018-Puro Product Name / Description CRE reporter cell line (Bsd): HEK293-loxP-GFP- RFP (Bsd). Cell line expresses "LoxP-GFP-stop-

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Objectives the neutral theory detecting natural selection exercises 1 - learn about the neutral theory 2 - be able to detect natural selection at the molecular

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

ViraBind PLUS Retrovirus Concentration and Purification Mega Kit

ViraBind PLUS Retrovirus Concentration and Purification Mega Kit Product Manual ViraBind PLUS Retrovirus Concentration and Purification Mega Kit Catalog Number VPK-136 VPK-136-5 2 preps 10 preps FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction

More information

Supplementary Information

Supplementary Information Journal : Nature Biotechnology Supplementary Information Targeted genome engineering in human cells with RNA-guided endonucleases Seung Woo Cho, Sojung Kim, Jong Min Kim, and Jin-Soo Kim* National Creative

More information

Technical Review. Real time PCR

Technical Review. Real time PCR Technical Review Real time PCR Normal PCR: Analyze with agarose gel Normal PCR vs Real time PCR Real-time PCR, also known as quantitative PCR (qpcr) or kinetic PCR Key feature: Used to amplify and simultaneously

More information

Supplementary Figure 1 qrt-pcr expression analysis of NLP8 with and without KNO 3 during germination.

Supplementary Figure 1 qrt-pcr expression analysis of NLP8 with and without KNO 3 during germination. Supplementary Figure 1 qrt-pcr expression analysis of NLP8 with and without KNO 3 during germination. Seeds of Col-0 were harvested from plants grown at 16 C, stored for 2 months, imbibed for indicated

More information

Discovery and Humanization of Novel High Affinity Neutralizing Monoclonal Antibodies to Human IL-17A

Discovery and Humanization of Novel High Affinity Neutralizing Monoclonal Antibodies to Human IL-17A Discovery and Humanization of Novel High Affinity Neutralizing Monoclonal Antibodies to Human IL-17A Contacts: Marty Simonetti martysimonetti@gmail.com Kirby Alton kirby.alton@abeomecorp.com Rick Shimkets

More information

How Do You Clone a Gene?

How Do You Clone a Gene? S-20 Edvo-Kit #S-20 How Do You Clone a Gene? Experiment Objective: The objective of this experiment is to gain an understanding of the structure of DNA, a genetically engineered clone, and how genes are

More information

Supplementary Methods. Plasmid construction. NS5A-fluorophore fusion Jc1 genomes were generated

Supplementary Methods. Plasmid construction. NS5A-fluorophore fusion Jc1 genomes were generated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Supplementary Methods Plasmid construction. NS5A-fluorophore fusion Jc1 genomes were generated by introducing a linker containing an XbaI and

More information

Supplementary Data: Fig. 1S Detailed description of In vivo experimental design

Supplementary Data: Fig. 1S Detailed description of In vivo experimental design 1 2 Supplementary Data: Fig. 1S Detailed description of In vivo experimental design 3 4 5 6 7 8 9 Relative Expression Studies 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 The

More information

Figure 1: E. Coli lysate transfer using liquid handling automation

Figure 1: E. Coli lysate transfer using liquid handling automation Figure 1: E. Coli lysate transfer using liquid handling automation Figure 1 - E. coli lysate transfer using liquid handling automation. Following the manufacturer s procedures, a 96-well plate miniprep

More information

Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm

Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm Anja Smith Director R&D Dharmacon, part of GE Healthcare Imagination at work crrna:tracrrna program Cas9 nuclease Active crrna is

More information

Bio-Reagent Services. Custom Gene Services. Gateway to Smooth Molecular Biology! Your Innovation Partner in Drug Discovery!

Bio-Reagent Services. Custom Gene Services. Gateway to Smooth Molecular Biology! Your Innovation Partner in Drug Discovery! Bio-Reagent Services Custom Gene Services Gateway to Smooth Molecular Biology! Gene Synthesis Mutagenesis Mutant Libraries Plasmid Preparation sirna and mirna Services Large-scale DNA Sequencing GenPool

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Green Fluorescent Protein. Avinash Bayya Varun Maturi Nikhileswar Reddy Mukkamala Aravindh Subhramani

Green Fluorescent Protein. Avinash Bayya Varun Maturi Nikhileswar Reddy Mukkamala Aravindh Subhramani Green Fluorescent Protein Avinash Bayya Varun Maturi Nikhileswar Reddy Mukkamala Aravindh Subhramani Introduction The Green fluorescent protein (GFP) was first isolated from the Jellyfish Aequorea victoria,

More information

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping Sept 2. Structure and Organization of Genomes Today: Genetic and Physical Mapping Assignments: Gibson & Muse, pp.4-10 Brown, pp. 126-160 Olson et al., Science 245: 1434 New homework:due, before class,

More information

Xfect Protein Transfection Reagent

Xfect Protein Transfection Reagent Xfect Protein Transfection Reagent Mammalian Expression Systems Rapid, high-efficiency, low-toxicity protein transfection Transfect a large amount of active protein Virtually no cytotoxicity, unlike lipofection

More information

Recombination between Two Identical Sequences within the Same Retroviral RNA Molecule

Recombination between Two Identical Sequences within the Same Retroviral RNA Molecule JOURNAL OF VIROLOGY, July 1999, p. 5912 5917 Vol. 73, No. 7 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Recombination between Two Identical Sequences within

More information

Evolutionary optimization of fluorescent proteins for intracellular FRET

Evolutionary optimization of fluorescent proteins for intracellular FRET Evolutionary optimization of fluorescent proteins for intracellular FRET Annalee W Nguyen 1 & Patrick S Daugherty 1 Fluorescent proteins that exhibit Förster resonance energy transfer (FRET) have made

More information

Optimizing Synthetic DNA for Metabolic Engineering Applications. Howard Salis Penn State University

Optimizing Synthetic DNA for Metabolic Engineering Applications. Howard Salis Penn State University Optimizing Synthetic DNA for Metabolic Engineering Applications Howard Salis Penn State University Synthetic Biology Specify a function Build a genetic system (a DNA molecule) Genetic Pseudocode call producequorumsignal(luxi

More information

BIBC 103 Learning Goals with Supporting Learning Outcomes

BIBC 103 Learning Goals with Supporting Learning Outcomes BIBC 103 Learning Goals with Supporting Learning Outcomes 1) Basic Lab Skills A. Conceptual understanding and moderate level of hands-on proficiency in making laboratory solutions, including understanding

More information

MATH 5610, Computational Biology

MATH 5610, Computational Biology MATH 5610, Computational Biology Lecture 2 Intro to Molecular Biology (cont) Stephen Billups University of Colorado at Denver MATH 5610, Computational Biology p.1/24 Announcements Error on syllabus Class

More information

User s Guide MegaTran 1.0 Transfection Reagent

User s Guide MegaTran 1.0 Transfection Reagent User s Guide MegaTran 1.0 Transfection Reagent Package Contents and Storage Conditions... 2 Related products... 2 Introduction... 2 Production and Quality Assurance:... 3 Experimental Procedures... 3 Transfection

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 3 Molecular Techniques Separation and Detection, Part

More information

Bio Rad PCR Song Lyrics

Bio Rad PCR Song Lyrics Bio Rad PCR Song Lyrics There was a time when to amplify DNA, You had to grow tons and tons of tiny cells. (Oooh) Then along came a guy named Dr. Kary Mullis, Said you can amplify in vitro just as well.

More information

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping BENG 183 Trey Ideker Genome Assembly and Physical Mapping Reasons for sequencing Complete genome sequencing!!! Resequencing (Confirmatory) E.g., short regions containing single nucleotide polymorphisms

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Number and length distributions of the inferred fosmids.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Number and length distributions of the inferred fosmids. Supplementary Figure 1 Number and length distributions of the inferred fosmids. Fosmid were inferred by mapping each pool s sequence reads to hg19. We retained only those reads that mapped to within a

More information

Sort-seq under the hood: implications of design choices on largescale characterization of sequence-function relations

Sort-seq under the hood: implications of design choices on largescale characterization of sequence-function relations Sort-seq under the hood: implications of design choices on largescale characterization of sequence-function relations The Harvard community has made this article openly available. Please share how this

More information

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies Molecular Cell, Volume 35 Supplemental Data Single-Molecule Analysis Reveals Differential Effect of ssdna-binding Proteins on DNA Translocation by XPD Helicase Masayoshi Honda, Jeehae Park, Robert A. Pugh,

More information

Phenotypic response conferred by the Lr22a leaf rust resistance gene against ten Swiss P. triticina isolates.

Phenotypic response conferred by the Lr22a leaf rust resistance gene against ten Swiss P. triticina isolates. Supplementary Figure 1 Phenotypic response conferred by the leaf rust resistance gene against ten Swiss P. triticina isolates. The third leaf of Thatcher (left) and RL6044 (right) is shown ten days after

More information

3 Designing Primers for Site-Directed Mutagenesis

3 Designing Primers for Site-Directed Mutagenesis 3 Designing Primers for Site-Directed Mutagenesis 3.1 Learning Objectives During the next two labs you will learn the basics of site-directed mutagenesis: you will design primers for the mutants you designed

More information

Some types of Mutagenesis

Some types of Mutagenesis Mutagenesis What Is a Mutation? Genetic information is encoded by the sequence of the nucleotide bases in DNA of the gene. The four nucleotides are: adenine (A), thymine (T), guanine (G), and cytosine

More information

psmpuw-ires-blasticidin Lentiviral Expression Vector

psmpuw-ires-blasticidin Lentiviral Expression Vector Product Data Sheet psmpuw-ires-blasticidin Lentiviral Expression Vector CATALOG NUMBER: VPK-219 STORAGE: -20ºC QUANTITY AND CONCENTRATION: 10 µg at 0.25 µg/µl in TE Background Lentivirus vector based on

More information

Cre Stoplight with Living Colors is a faster, brighter

Cre Stoplight with Living Colors is a faster, brighter Cre Stoplight with Living Colors is a faster, brighter reporter for Cre recombinase. Drago A Guggiana-Nilo 1, Anne Marie Quinn 2,Thomas E. Hughes 1 1 Department of Cell Biology and Neuroscience, Montana

More information

Introduction to Next Generation Sequencing (NGS) Andrew Parrish Exeter, 2 nd November 2017

Introduction to Next Generation Sequencing (NGS) Andrew Parrish Exeter, 2 nd November 2017 Introduction to Next Generation Sequencing (NGS) Andrew Parrish Exeter, 2 nd November 2017 Topics to cover today What is Next Generation Sequencing (NGS)? Why do we need NGS? Common approaches to NGS NGS

More information

High-Resolution Oligonucleotide- Based acgh Analysis of Single Cells in Under 24 Hours

High-Resolution Oligonucleotide- Based acgh Analysis of Single Cells in Under 24 Hours High-Resolution Oligonucleotide- Based acgh Analysis of Single Cells in Under 24 Hours Application Note Authors Paula Costa and Anniek De Witte Agilent Technologies, Inc. Santa Clara, CA USA Abstract As

More information

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Lesson Overview 14.3 Studying the Human Genome Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates. Nucleic acids are chemically different from other macromolecules

More information

Supplemental Information. Boundary Formation through a Direct. Threshold-Based Readout. of Mobile Small RNA Gradients

Supplemental Information. Boundary Formation through a Direct. Threshold-Based Readout. of Mobile Small RNA Gradients Developmental Cell, Volume 43 Supplemental Information Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients Damianos S. Skopelitis, Anna H. Benkovics, Aman Y. Husbands,

More information

Supplementary Figures Montero et al._supplementary Figure 1

Supplementary Figures Montero et al._supplementary Figure 1 Montero et al_suppl. Info 1 Supplementary Figures Montero et al._supplementary Figure 1 Montero et al_suppl. Info 2 Supplementary Figure 1. Transcripts arising from the structurally conserved subtelomeres

More information

F 11/23 Happy Thanksgiving! 8 M 11/26 Gene identification in the genomic era Bamshad et al. Nature Reviews Genetics 12: , 2011

F 11/23 Happy Thanksgiving! 8 M 11/26 Gene identification in the genomic era Bamshad et al. Nature Reviews Genetics 12: , 2011 3 rd Edition 4 th Edition Lecture Day Date Topic Reading Problems Reading Problems 1 M 11/5 Complementation testing reveals that genes are distinct entities Ch. 7 224-232 2 W 11/7 One gene makes one protein

More information

Supplemental Information. A Versatile Tool for Live-Cell Imaging. and Super-Resolution Nanoscopy Studies. of HIV-1 Env Distribution and Mobility

Supplemental Information. A Versatile Tool for Live-Cell Imaging. and Super-Resolution Nanoscopy Studies. of HIV-1 Env Distribution and Mobility Cell Chemical Biology, Volume 24 Supplemental Information A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility Volkan Sakin, Janina Hanne,

More information

Nature Immunology: doi: /ni Supplementary Figure 1

Nature Immunology: doi: /ni Supplementary Figure 1 Supplementary Figure 1 BALB/c LYVE1-deficient mice exhibited reduced lymphatic trafficking of all DC subsets after oxazolone-induced sensitization. (a) Schematic overview of the mouse skin oxazolone contact

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 16206 DOI: 10.1038/NMICROBIOL.2016.206 Single cell RNA seq ties macrophage polarization to growth rate of intracellular

More information

Application Note. NGS Analysis of B-Cell Receptors & Antibodies by AptaAnalyzer -BCR

Application Note. NGS Analysis of B-Cell Receptors & Antibodies by AptaAnalyzer -BCR Reduce to the Best Application Note NGS Analysis of B-Cell Receptors & Antibodies by AptaAnalyzer -BCR The software AptaAnalyzer harnesses next generation sequencing (NGS) data to monitor the immune response

More information

Neutral theory: The neutral theory does not say that all evolution is neutral and everything is only due to to genetic drift.

Neutral theory: The neutral theory does not say that all evolution is neutral and everything is only due to to genetic drift. Neutral theory: The vast majority of observed sequence differences between members of a population are neutral (or close to neutral). These differences can be fixed in the population through random genetic

More information

Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ

Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ Timothy Looney, PhD Staff Scientist, Clinical Next-Generation Sequencing Division Thermo Fisher Scientific The world leader in serving

More information

Supporting Information

Supporting Information Supporting Information Yuan et al. 10.1073/pnas.0906869106 Fig. S1. Heat map showing that Populus ICS is coregulated with orthologs of Arabidopsis genes involved in PhQ biosynthesis and PSI function, but

More information

Supplementary Table 1. The Q-PCR primer sequence is summarized in the following table.

Supplementary Table 1. The Q-PCR primer sequence is summarized in the following table. Supplementary Table 1. The Q-PCR primer sequence is summarized in the following table. Name Sequence (5-3 ) Application Flag-u ggactacaaggacgacgatgac Shared upstream primer for all the amplifications of

More information

Application of next generation sequencing of a begomovirusresistant. KASPar assay for SNP detection of the Ty1-Ty3 region

Application of next generation sequencing of a begomovirusresistant. KASPar assay for SNP detection of the Ty1-Ty3 region Application of next generation sequencing of a begomovirusresistant inbred to design a KASPar assay for SNP detection of the Ty1-Ty3 region Menda, N. 1, S. Strickler 1, D.M. Dunham 1, D.P. Maxwell 2, L.

More information

psmpuw-puro Lentiviral Expression Vector

psmpuw-puro Lentiviral Expression Vector Product Data Sheet psmpuw-puro Lentiviral Expression Vector CATALOG NUMBER: VPK-212 STORAGE: -20ºC QUANTITY AND CONCENTRATION: 10 µg at 0.25 µg/µl in TE Background Lentivirus vector based on the human

More information

Amplicon Sequencing Template Preparation

Amplicon Sequencing Template Preparation Amplicon Sequencing Template Preparation The DNA sample preparation procedure for Amplicon Sequencing consists of a simple PCR amplification reaction, but uses special Fusion Primers (Figure 1-1). The

More information

ViraBind PLUS Retrovirus Concentration and Purification Kit

ViraBind PLUS Retrovirus Concentration and Purification Kit Product Manual ViraBind PLUS Retrovirus Concentration and Purification Kit Catalog Number VPK-135 2 preps FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Retroviral gene transfer

More information

Biosafety Level Host Range Propagation Comments

Biosafety Level Host Range Propagation Comments Guidelines BSL for Commonly used Viral Vectors Version 1.0 Office of Animal Care and Institutional Biosafety (OACIB) 1737 West Polk Street (MC 672) 206 Administrative Office Building Chicago, IL 60612

More information

Lecture 25 (11/15/17)

Lecture 25 (11/15/17) Lecture 25 (11/15/17) Reading: Ch9; 328-332 Ch25; 990-995, 1005-1012 Problems: Ch9 (study-guide: applying); 1,2 Ch9 (study-guide: facts); 7,8 Ch25 (text); 1-3,5-7,9,10,13-15 Ch25 (study-guide: applying);

More information

X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction

X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction Tomohisa Shimasaki 1, Hiromi Yoshida 2, Shigehiro Kamitori 2 & Koji

More information

Exam MOL3007 Functional Genomics

Exam MOL3007 Functional Genomics Faculty of Medicine Department of Cancer Research and Molecular Medicine Exam MOL3007 Functional Genomics Tuesday May 29 th 9.00-13.00 ECTS credits: 7.5 Number of pages (included front-page): 5 Supporting

More information

Selection of Target Sites for Mobile DNA Integration in the Human Genome

Selection of Target Sites for Mobile DNA Integration in the Human Genome Selection of Target Sites for Mobile DNA Integration in the Human Genome Charles Berry 1, Sridhar Hannenhalli 2, Jeremy Leipzig 3, Frederic D. Bushman 3* 1 Department of Family and Preventive Medicine,

More information

Thermo Scientific Dharmacon SMARTvector 2.0 Lentiviral shrna Particles

Thermo Scientific Dharmacon SMARTvector 2.0 Lentiviral shrna Particles Thermo Scientific Dharmacon SMARTvector 2.0 Lentiviral shrna Particles Long-term gene silencing shrna-specific design algorithm High titer, purified particles Thermo Scientific Dharmacon SMARTvector shrna

More information

Using mutants to clone genes

Using mutants to clone genes Using mutants to clone genes Objectives 1. What is positional cloning? 2. What is insertional tagging? 3. How can one confirm that the gene cloned is the same one that is mutated to give the phenotype

More information

BIOCHEMISTRY 551: BIOCHEMICAL METHODS SYLLABUS

BIOCHEMISTRY 551: BIOCHEMICAL METHODS SYLLABUS BIOCHEMISTRY 551: BIOCHEMICAL METHODS SYLLABUS Course Description: Biochemistry 551 is an integrated lecture, lab and seminar course that covers biochemistry-centered theory and techniques. The course

More information

Supplemental Information. Natural RNA Polymerase Aptamers. Regulate Transcription in E. coli

Supplemental Information. Natural RNA Polymerase Aptamers. Regulate Transcription in E. coli Molecular Cell, Volume 67 Supplemental Information Natural RNA Polymerase Aptamers Regulate Transcription in E. coli Nadezda Sedlyarova, Philipp Rescheneder, Andrés Magán, Niko Popitsch, Natascha Rziha,

More information

Genome Engineering. Brian Petuch

Genome Engineering. Brian Petuch Genome Engineering Brian Petuch Guiding Principles An understanding of the details of gene engineering is essential for understanding protocols when making recommendations on: Risk assessment Containment

More information