Welcome Packaging Research in Electronic Energy Systems (PREES) CIRCUIT DESIGN BEYOND THE SCHEMATIC

Size: px
Start display at page:

Download "Welcome Packaging Research in Electronic Energy Systems (PREES) CIRCUIT DESIGN BEYOND THE SCHEMATIC"

Transcription

1 Characterization of Ultra-Thin Flexible Ceramics for High-Density, 3D-Stackable Substrates for Wearable Power Electronics Xin Zhao Bo Gao Douglas C. Hopkins North Carolina State University Presented at the 2016 Electronics Packaging Symp & Heterogeneous Integration Workshop, Binghamton, NY, Oct 6-7, 2016 Points of contact: Welcome Packaging Research in Electronic Energy Systems (PREES) CIRCUIT DESIGN BEYOND THE SCHEMATIC Douglas C. Hopkins, Ph.D. Director PREES Laboratory FREEDM System Center North Carolina State Univ Varsity Dr., Suite 100 Raleigh, NC Feb 2016 Points of contact:

2 Multiphysics Simulation, Test & Assembly Electrical circuit analysis, CAD layout, and thermo-mechanical analysis with: COMSOL & ANSYS (MultiPhysics simulators), AutoCad, SolidWorks, Q3D, PLECS, SPICE Wet Bench for cleaning & formulation Thermal Imaging Flir Heavy wire & ribbon (Al, Cu) bonding research with: Hesse Mechatronics fully automated BJ939 Hand Soldering and Re-work station Manual high-precision Pick n Place ( 0403 chips) Torch-TP39V with video assist 3D Optical Profiler (1.7um resolution) ACS VisionMaster High End Electrical Test: Tektronix 371A Power Curve Tracer Oscilloscopes (2GHz/5GS/s) Arb Funct Gen., Multimeters (6.5 digit), Power supplies (kv&hc), 500A & 40kV probes Full Processing Including Cu Systems 3-Zone Rapid Deep Infrared Furnace (150 C C) (curing, sintering, thick film, glass sealing, controlled atmosphere-cu) Class 1000 Flow Hood 3D scanner 3D Printer - Thermoplastic MakerBot Rep2X (200 C 290 C) 4-axis Robotic Dispenser EFD w/ 3 Valves (10µm) (3D printing; thick film & PTF, and solder & sinter inks) 5-Zone Reflow Oven (0 C 450 C) Sakama - (curing, solder reflow, polymer thickfilm, controlled atmosphere; Cu) UV Curing Oven & Wands Vacuum Oven (0 C 250 C) (curing, drying, soldering, controlled atmosphere; Cu)

3 Flexible PCB for Ultra Dense VRMs By Bo Gao A 12V Input, 100A Output High Density VRM 10mm*25mm*10mm 3-ph sync. buck From simulation: 97%@2.5MHz, 90%@10MHz 0.8kW/cu-in@1.2V/100A 1kW/cu-in@1.5V/100A 1.6kw/cu-in@2.5V/100A 1. Stackable for FREE Eliminates board to board connectors. 2. Flat surface for GaN Lower stress caused by CTE mismatch, simple heat sink design. 3. No module substrate FPC itself can be folded back to form pads. Objective Investigate new ultra thin ceramics (ThinStrate by ENrG, Inc.) for power electronics applications OUTLINE Wearable Power Electronics Ultra-thin Flexible Ceramics Electrical and Thermal Characterization of 3 mol% Yttria Stabilized Zirconia (3YSZ) Pre-stress analysis of 3YSZ substrate with thick copper layers Circuits Topology design Corresponding to Specific Requirements Applications in Power Electronics Summary

4 Wearable Power Electronics Si WBG power semiconductors (GaN, SiC) Higher Breakdown Voltage Higher Operating Temperature Higher Thermal Conductivity Higher power density (smaller die) High Voltage Devices Less heatsink volume Less structural complexity Smaller Size From Traditional to Wearable Power Module Possibility for Wearable Power Electronics Module Challenge of Wearable Power Electronics Suitable Substrate with flexibility Substrate with enough thermal conductivity Ultra-thin Ceramics 3YSZ Ceramic Substrates with 40 µm & 20 µm Thickness Properties of 3YSZ substrate Thermal Conductivity CTE 8.2 ppm/ Dielectric Constant Breakdown Voltage Density Surface Roughness: Poisson Ratio 0.32 Young's Modulus Tensile Strength Bend Strength 2.3kV (20µm) 3.5kV (40µm) 6.05 g/cm nm (rms) 207 GPa GPa Suitable for Metallization High tensile strength and bending strength Good thermal conductivity compare with organic dielectric materials with similar thickness Light for lower weight profile

5 Electrical Characterization Leakage Current Leakage Current Measurement 1.00E E micron 3YSZ Reverse Characterization Electrode by E-beam Deposition 200 nm Ti layer Electrode Dia. 12 mm 25 o C ~ 175 o C Leakage current 1.00E E E-07 25C 75C 125C 175C 1.00E E Voltage Suitable for low temperature (< 100 o C) and low voltage (< 100V) applications Wearable power electronics modules High Voltage Setup for leakage current measurement of power semiconductor devices Dielectric Strength, MV / m Electrical Characterization Penn State Ln(1/(1-F)) C, 20µm Observation Ln(Breakdown Strength (MV / m)) Dielectric Strength, Mv / m Ln(1/(1-F)) C, 40µm Observation Ln(Breakdown Strength (MV/ m)) Samples are loaded with stepped voltage Stopped when conduction path is observed in the sample No leakage current value can be obtained due to the setup Limitation of leakage current is ~ 1.3 ma connector 20 sample points are measured for each thickness Weipull Plot to calculate the Breakdown Voltage Solid red lines represent the 95% confidence bounds Black lines stand for ideal breakdown strength distributions Dielectric Strength 288 kv/mm for 20 µm 196 kv/mm for 40 µm

6 Electrical Characterization Dielectric Strength & Breakdown Voltage v. Temperature Penn State Same measurement is applied at different temperature Dielectric Strength and Breakdown Voltage decreased at higher temperature (25 o C ~ 150 o C) Electrical Characterization Dielectric Constant and Loss Measured from 100 Hz to 1 MHz Temperature -65 o C ~ 250 o C Dielectric loss increased at higher temperature, exceeded 1 at 75 o C Dielectric constant increased at higher temperature, the difference of curves for 20 µm and 40 µm is due thickness variations

7 Thermal Characterization 3-Omega Method Thermal Conductivity Measurements 3-Omega Method Kelvin connection to GOLD line deposited on the ceramic Gold line length, 8mm, width 0.1mm Define input current at different frequency Measure output voltage at corresponding 3ω frequency dt = 2 V / V (dr/ dt) K = V1 dr / DT / (4 lr ) V + V - I + Thermal Conductivity decreases with higher temperature I - Increase in temperature of heater line per unit power vs frequency Simulation and Experiment are very good Thermal Characterization TTR Method Thermal Conductivity Measurements Transient Thermo-reflectance (TTR) method The result by TTR method is 2.85 W/mK, verifying the measurement results by 3- omega method Measurement Setup Laser Beam A applied at the sample surface Laser Beam B is applied to measure the transient thermal reflectance signal Both beams are focused at the same spot on the sample surface Si photodiode collects the reflected laser beam B Oscilloscope records the reflected laser beam B after amplification Si detector input the TTR signal into the Oscilloscope

8 Thermal Characterization Simulation Simulation comparison between 3YSZ ThinStrate v. traditional power substrate for 2 kv applications 20µm 3YSZ 40µm 3YSZ Bottom Temperature is fixed at 25 o C Power density on the device surface is defined as 1000 W/cm 2 Parts Dimension / mm 3 Heat Capacity/ J/KgK Thermal Conductivity / W/m K Thermal Resistance / o C/W SiC Diode E-4 Solder E-5 Cu plate E-6 3YSZ E (0.04) 12.08E-5 Al 2 O E-5 AlN E-5 Thermal impedance of 3YSZ is comparable to AlN and Al 2 O 3 for 2 kv applications 10mil - AlN 10mil Al 2 O 3 Substrate Junction Temperature / K 20µm 3YSZ µm 3YSZ mil - AlN mil Al 2 O Mechanical Analysis - Pre-stress analysis Copper Layer Ceramic Solder Paste SiC diode ¼ symmetric applied to improve calc efficiency Sn63Pb37 Solder Paste was set as 50 µm thick Anand Constitutive Model was applied to describe the viscoplastic behavior of solder paste Simulation setup for comparison between 3YSZ ultra-thin substrate with traditional power substrate for 2 kv applications Young s Modulus / Gpa CTE / 10-6 / o C Temperature profile for soldering process, region between two red lines are for pre-stress analysis Poisson Ratio Heat Capacit y / J/ Dens ity / Kg/ m 3 Thermal Conductivity / W/ SiC Sn63 Pb37 Temperatur e dependent 24.5 Temper ature depende nt Cu 117 Time depend ent AlN Al 2 O 3 3YS Z Materials Parameters for Pre-stress Simulations

9 Mechanical Stress Von Mises Stress Distribution Max Von Mises Stress AlN 141 Mpa Alumina 248 Mpa 20 µm 3YSZ 292 Mpa 40 µm 3YSZ 261 Mpa Location The interface between Ceramic Layer and Copper Layer 10mil AlN substrate 10mil Alumina substrate Higher Stress concentration on the 3YSZ substrate Small thickness Large Stress gradient 20 µm 3YSZ substrate 40 µm 3YSZ substrate Mechanical Stress Shear Stress in Solder Layer Shear Stress on solder layer AlN Mpa Alumina Mpa 20 µm 3YSZ Mpa 40 µm 3YSZ Mpa 10mil AlN substrate 10mil Alumina substrate Location The corner of SiC device Front side for AlN and Alumina Modules Backside for 3YSZ modules 20 µm 3YSZ substrate 40 µm 3YSZ substrate

10 Mechanical Stress Shear Stress Ceramic Layer Shear Stress on Ceramic layer AlN 33.8 Mpa Alumina 60.9 Mpa 20 µm 3YSZ 118 Mpa 40 µm 3YSZ 194 Mpa Location The corner of SiC device Interface with Cu layers 10mil AlN substrate 10mil Alumina substrate Large shear stress in 3YSZ substrate, need to optimized metallization process for better stress management Tensile stress of 3YSZ: 248 Mpa Lower than the maximum allowed tensile stress 20 µm 3YSZ substrate 40 µm 3YSZ substrate Circuit Design for general wearable power electronics Most general topologies for power electronics half-bridge configuration Previous Work on single switch configuration for flexible power electronics applications

11 3D Layout design for wearable power electronics 3D concept layout based on ultra-thin 3YSZ substrate Left: with switching node floating; Right: with switching node sitting on the substrate Application Characterization for circuit selection Properties of substrate required by different specific applications 2D 2 dimensional HV High Voltage HC High Current HT High Temperature 3D 3 dimensional HF High Frequency HP High Power

12 Summary 3YSZ ultra-thin ceramic substrate was introduced for its potential application to wearable power electronics Electrical Characterization indicated that the substrate can withstand high voltage, but considering its higher leakage current under high temperature and high voltage, its potential application mainly focuses on lower voltage level and lower temperature Thermal Characterization results showed that the thermal conductivity remains high at lower temperatures, such as for wearables Thermal simulations showed that the thermal performance of ultra-thin 3YSZ substrate is comparable to traditional substrate AlN and Al2O3 Pre-stress analysis indicated that the substrate suffered higher shear strength, which requires optimization of metallization process for better thermal management General topologies for phase leg configuration are introduced, together with former works done by PREES on flexible power switches based on 3YSZ ultra-thin flexible substrate Two 3D topologies for single switches are proposed Requirements of flexible substrate materials for different specific applications are summarized Acknowledgements The authors would like to thank Texas Instruments for Laboratory support of such technical explorations, along with other PREES Sponsors, and ENrG for supplying materials. Also, Haotao KE and Mingyu Yang for early design contributions.

13 Thank you Questions? Douglas C. Hopkins, Ph.D. Director PREES Laboratory, FREEDM System Center North Carolina State University 1791 Varsity Dr., Suite 100; Raleigh, NC

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015)

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) Content 1. Geometric properties 1.01. Available ceramic types / thicknesses... 03 1.02. thicknesses (standard)... 03 3. Quality

More information

Thermal and Electrical Characterizations of Ultra-Thin Flexible 3YSZ Ceramic for Electronic Packaging Applications

Thermal and Electrical Characterizations of Ultra-Thin Flexible 3YSZ Ceramic for Electronic Packaging Applications Thermal and Electrical Characterizations of Ultra-Thin Flexible 3YSZ Ceramic for Electronic Packaging Applications Xin Zhao 1, K. Jagannadham 1, Wuttichai Reainthippayasakul 2, Michael. T. Lanagan 2, Douglas

More information

Thermal Analysis of High Power Pulse Laser Module

Thermal Analysis of High Power Pulse Laser Module Thermal Analysis of High Power Pulse Laser Module JinHan Ju PerkinElmer Optoelectronics Salem MA 01970 Abstract Thermal management is very critical in laser diode packaging, especially for a high power

More information

c/bach, 2-B Pol. Ind Foinvasa Montcada i Reixac (Barcelona) SPAIN Tel FAX

c/bach, 2-B Pol. Ind Foinvasa Montcada i Reixac (Barcelona) SPAIN Tel FAX 1- What is 2- How does it work? 3- How do we make it? 4- Applications 5- Processing? WHAT IS? Thick aluminium based substrate, cladded in ED copper foil. Designed for an effective thermal dissipation and

More information

Packaging Technologies for SiC Power Modules

Packaging Technologies for SiC Power Modules Packaging Technologies for SiC Power Modules Masafumi Horio Yuji Iizuka Yoshinari Ikeda ABSTRACT Wide bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN) are attracting attention

More information

Die Attach Materials. Die Attach G, TECH. 2U. TECHNICAL R&D DIV.

Die Attach Materials. Die Attach G, TECH. 2U. TECHNICAL R&D DIV. Die Attach Materials Die Attach G, TECH. 2U. TECHNICAL R&D DIV. 2 Topics 3 What it is X 5,000 X 10,000 X 50,000 Si Chip Au Plating Substrate Ag Resin 4 Current Products Characteristics H9890-6A H9890-6S

More information

Fraunhofer IZM Berlin

Fraunhofer IZM Berlin Fraunhofer IZM Berlin Advanced Packaging for High Power LEDs Dr. Rafael Jordan SIIT Agenda Gluing Soldering Sintering Transient Liquid Phase Bonding/Soldering Thermo Compression Junction Temperature Measurements

More information

Investigation of Rapid-Prototyping Methods for 3D Printed Power Electronic Module Development

Investigation of Rapid-Prototyping Methods for 3D Printed Power Electronic Module Development Investigation of Rapid-Prototyping Methods for 3D Printed Power Electronic Module Development Haotao Ke, Adam Morgan, Ronald Aman, Douglas C Hopkins, Fellow Laboratory for Packaging Research in Electronic

More information

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method

TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 1 TIMAwave a novel test stand for thermal diffusivity measurement based on the Angstrom s method 12th European Advanced Technology Workshop on Micropackaging and Thermal management La Rochelle, France

More information

Thermo-Mechanical Reliability of Through-Silicon Vias (TSVs)

Thermo-Mechanical Reliability of Through-Silicon Vias (TSVs) 1 Thermo-Mechanical Reliability of Through-Silicon Vias (TSVs) Xi Liu Ph.D. Student and Suresh K. Sitaraman, Ph.D. Professor The George W. Woodruff School of Mechanical Engineering Georgia Institute of

More information

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper High Efficiency UV LEDs Enabled by Next Generation Substrates Whitepaper Introduction A primary industrial market for high power ultra-violet (UV) LED modules is curing equipment used for drying paints,

More information

23 rd ASEMEP National Technical Symposium

23 rd ASEMEP National Technical Symposium THE EFFECT OF GLUE BOND LINE THICKNESS (BLT) AND FILLET HEIGHT ON INTERFACE DELAMINATION Raymund Y. Agustin Janet M. Jucar Jefferson S. Talledo Corporate Packaging & Automation/ Q&R STMicroelectronics,

More information

Introduction of CSC Pastes

Introduction of CSC Pastes Introduction of CSC Pastes Smart Phones & Conductive Pastes Chip Varistors Chip Inductors LC Filters Flexible Printed Circuit Boards Electronic Molding Compounds ITO Electrodes PCB Through Holes Semiconductor

More information

Development of Novel NOx Sensors and System Integration with Alumina Heater Elements

Development of Novel NOx Sensors and System Integration with Alumina Heater Elements Development of Novel NOx Sensors and System Integration with Alumina Heater Elements UC Riverside PEMS 2016 International Conference & Workshop March 17, 2016 F. Bell, M. Boettcher, J. Chee, J. Fitzpatrick,

More information

Fine Pitch P4 Probe Cards

Fine Pitch P4 Probe Cards Fine Pitch P4 Probe Cards Photolithographic Pattern Plating Process June 1998 By Toshi Ishii, Hide Yoshida Contents What is a P4 probe card? Specification Some test results Tip cleaning RF performance

More information

Flip Chip - Integrated In A Standard SMT Process

Flip Chip - Integrated In A Standard SMT Process Flip Chip - Integrated In A Standard SMT Process By Wilhelm Prinz von Hessen, Universal Instruments Corporation, Binghamton, NY This paper reviews the implementation of a flip chip product in a typical

More information

A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics

A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics A New Thermal Management Material for HBLEDs based on Aluminum Nitride Ceramics Thermal Management Challenges in HBLED Excess heat leads to a whole range of performance and reliability issues for high

More information

Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study. Krzysztof Dabrowiecki Jörg Behr

Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study. Krzysztof Dabrowiecki Jörg Behr Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study Krzysztof Dabrowiecki Jörg Behr Overview A little bit of history in applying finite element analysis for probe card

More information

Low Temperature Curable Positive Tone Photosensitive Polyimide Photoneece LT series. Toray Industries, Inc.

Low Temperature Curable Positive Tone Photosensitive Polyimide Photoneece LT series. Toray Industries, Inc. Low Temperature Curable Positive Tone Photosensitive Polyimide Photoneece LT series Toray Industries, Inc. 1 The features of LT series (1) Low temperature curable ( ~170 ) Less damage for weak semiconductor

More information

Silicon Nitride Substrates for Power Electronics. Ulrich Voeller, Bernd Lehmeier

Silicon Nitride Substrates for Power Electronics. Ulrich Voeller, Bernd Lehmeier Silicon Nitride Substrates for Power Electronics Ulrich Voeller, Bernd Lehmeier Table of content Si 3 N 4 1 2 3 4 Material characteristics Technology - comparison AMB/DBC Interfacial structure and chemistry

More information

II. A. Basic Concept of Package.

II. A. Basic Concept of Package. Wafer Level Package for Image Sensor Module Won Kyu Jeung, Chang Hyun Lim, Jingli Yuan, Seung Wook Park Samsung Electro-Mechanics Co., LTD 314, Maetan3-Dong, Yeongtong-Gu, Suwon, Gyunggi-Do, Korea 440-743

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society SLID bonding for thermal interfaces Thermal performance Outline Background and motivation The HTPEP project Solid-Liquid Inter-Diffusion (SLID) Au-Sn SLID Cu-Sn SLID Reliability and bond integrity Alternative

More information

3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014

3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014 3D Wirebondless IGBT Module for High Power Applications Dr. Ziyang GAO Jun. 20, 2014 1 1 Outline Background Information Technology Development Trend Technical Challenges ASTRI s Solutions Concluding Remarks

More information

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Bhavesh Varia 1, Xuejun Fan 1, 2, Qiang Han 2 1 Department of Mechanical Engineering Lamar

More information

180 Lake Front Drive Hunt Valley, MD

180 Lake Front Drive Hunt Valley, MD Innovation for Sputter Target Bonding: Leveraging the NanoBond Advantage Dr Omar M Knio 180 Lake Front Drive Hunt Valley, MD 21030 www.rntfoil.com Outline Company Background Technology and Technology Background

More information

Cal-Chip Electronics, Incorporated Thick Film Chip Resistors - RM Series

Cal-Chip Electronics, Incorporated Thick Film Chip Resistors - RM Series Thick Film Chip Resistors - RM Series Fixed Chip Resistors manufactured for more compact electronic components and automatic mounting system. These Chip Resistors have electrical stability and mechanical

More information

Solder joint reliability of cavity-down plastic ball grid array assemblies

Solder joint reliability of cavity-down plastic ball grid array assemblies cavity-down plastic ball grid array S.-W. Ricky Lee Department of Mechanical Engineering, The Hong Kong University of Science and, Kowloon, Hong Kong John H. Lau Express Packaging Systems, Inc., Palo Alto,

More information

Performance and Reliability Characteristics of 1200 V, 100 A, 200 o C Half-Bridge SiC MOSFET-JBS Diode Power Modules

Performance and Reliability Characteristics of 1200 V, 100 A, 200 o C Half-Bridge SiC MOSFET-JBS Diode Power Modules Performance and Reliability Characteristics of 1200 V, 100 A, 200 o C Half-Bridge SiC MOSFET-JBS Diode Power Modules James D. Scofield and J. Neil Merrett Air Force Research Laboratory 1950 Fifth St WPAFB,

More information

Low Temperature Co-fired Ceramics (LTCC) Multi-layer Module Boards

Low Temperature Co-fired Ceramics (LTCC) Multi-layer Module Boards Low Temperature Co-fired Ceramics () Multi-layer Module Boards Example: Automotive Application Example: Communication Application Murata's Low Temperature Co-fired Ceramics offer highly integrated substrates

More information

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Thermal Symposium August 9-10 2017 Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Mark Breloff Technical Sales Manager 1 Electronics power requirements

More information

Wire-bonds Durability in High-temperature Applications M. Klíma, B. Psota, I. Szendiuch

Wire-bonds Durability in High-temperature Applications M. Klíma, B. Psota, I. Szendiuch Ročník 2013 Číslo V Wire-bonds Durability in High-temperature Applications M. Klíma, B. Psota, I. Szendiuch Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University

More information

EPO-TEK Selector Guide

EPO-TEK Selector Guide Selector Guide www.epotek.com Electrically & Thermally Conductive Thermally Conductive/Electrically Insulating Optical/Fiber Optic Innovative Epoxy Adhesive Solutions for Over 45 Years Electrically & Thermally

More information

TGV and Integrated Electronics

TGV and Integrated Electronics TGV and Integrated Electronics Shin Takahashi ASAHI GLASS CO., LTD. 1 Ambient Intelligence Green Energy/Environment Smart Factory Smart Mobility Smart Mobile Devices Bio/Medical Security/Biometrics 2 Glass

More information

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste SEMIKRON Pty Ltd 8/8 Garden Rd Clayton Melbourne 3168 VIC Australia Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste For some years now, the elimination of bond

More information

Basic Properties and Application Examples of

Basic Properties and Application Examples of Basic Properties and Application Examples of 1. Basic properties of PGS 2. Functions of PGS 3. Application Examples Presentation [Sales Liaison] Panasonic Electronic Devices Co., Ltd. Capacitor Business

More information

Thermo-Mechanical Reliability Assessment of TSV Die Stacks by Finite Element Analysis

Thermo-Mechanical Reliability Assessment of TSV Die Stacks by Finite Element Analysis Thermo-Mechanical Reliability Assessment of TSV Die Stacks by Finite Element Analysis Dr. Roland Irsigler, emens AG Corporate Technology, CT T P HTC Outline TSV SOLID µbump Stacking TSV application FEA

More information

C51100 CuSn4 Industrial Rolled

C51100 CuSn4 Industrial Rolled Alloy Designation Bronze Rolled Products EN DIN CEN/TS 13388 CW45K JIS C 5111 BS PB 11 UNS Chemical Composition Weight percentage Cu C511 Rest Sn 3.5 4.5 % P.3.35 % This alloy is in accordance with RoHS

More information

PCB Technologies for LED Applications Application note

PCB Technologies for LED Applications Application note PCB Technologies for LED Applications Application note Abstract This application note provides a general survey of the various available Printed Circuit Board (PCB) technologies for use in LED applications.

More information

A new Glass GEM with a single sided guard-ring structure

A new Glass GEM with a single sided guard-ring structure A new Glass GEM with a single sided guard-ring structure RD-51 session! 5 July, 2013!! Yuki MITSUYA a, Takeshi FUJIWARA b, Hiroyuki TAKAHASHI a!! a Department of Nuclear Engineering and Management, The

More information

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14 Keeping Cool!: selecting high performance thermal materials for LED Lighting applications Ian Loader 25/03/14 1 Target Points to cover Basics of Thermal Management Considerations for thermal materials

More information

Modelling Embedded Die Systems

Modelling Embedded Die Systems Modelling Embedded Die Systems Stoyan Stoyanov and Chris Bailey Computational Mechanics and Reliability Group (CMRG) University of Greenwich, London, UK 22 September 2016 IMAPS/NMI Conference on EDT Content

More information

Challenges for Embedded Device Technologies for Package Level Integration

Challenges for Embedded Device Technologies for Package Level Integration Challenges for Embedded Device Technologies for Package Level Integration Kevin Cannon, Steve Riches Tribus-D Ltd Guangbin Dou, Andrew Holmes Imperial College London Embedded Die Technology IMAPS-UK/NMI

More information

Sheet) Graphite Sheet

Sheet) Graphite Sheet PGS(Pyrolytic Graphite Sheet) Graphite Sheet Panasonic Electronic Device Co.,Ltd Panasonic Electronic Device Hokkaido Co.,Ltd PGS Graphite Sheet PGS (Pyrolytic Highly Oriented Graphite Sheet) is made of

More information

Advanced Power Module Packaging for increased Operation Temperature and Power Density

Advanced Power Module Packaging for increased Operation Temperature and Power Density 15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia Advanced Power Module Packaging for increased Operation Temperature and Power Density Peter

More information

Micro-tube insertion into aluminum pads: Simulation and experimental validations

Micro-tube insertion into aluminum pads: Simulation and experimental validations Micro-tube insertion into aluminum pads: Simulation and experimental validations A. Bedoin, B. Goubault, F. Marion, M. Volpert, F. Berger, A. Gueugnot, H. Ribot CEA, LETI, Minatec Campus 17, rue des Martyrs

More information

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight Aluminum Silicon Carbide (AlSiC) Microprocessor Lids and Heat Sinks for Integrated Thermal Management Solutions Mark A. Occhionero, Robert A. Hay, Richard W. Adams, Kevin P. Fennessy, and Glenn Sundberg

More information

NARROW PITCH (0.4mm) CONNECTORS P4S SERIES

NARROW PITCH (0.4mm) CONNECTORS P4S SERIES FOR BOARD-TO-BOARD AND BOARD-TO-FPC CONNECTION AXT3, 4 NARROW PITCH (0.4mm) CONNECTORS P4S SERIES NEW 2. Strong resistance to adverse environments! Utilizes construction for high contact reliability. 1)

More information

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS - Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS Chemnitz System Packaging Page 1 System Packaging Outline: Wafer level packaging for MEMS

More information

HIGH TEMPERATURE CERAMIC & GRAPHITE ADHESIVES

HIGH TEMPERATURE CERAMIC & GRAPHITE ADHESIVES HIGH TEMPERATURE & GRAPHITE S Technical Bulletin A2 Ceramabond 835-M bonds halogen lamp. Ceramabond 503 coats heater used to 1700 ºC. Ceramabond 685-N bonds infrared heater. Graphi-Bond 551-RN bonds graphite

More information

TF-LFA. Thin Film Laserflash

TF-LFA. Thin Film Laserflash TF-LFA Thin Film Laserflash General Information of the thermo physical properties of materials and heat transfer optimization of final products is becoming more and more vital for industrial applications.

More information

Recent Advances in Die Attach Film

Recent Advances in Die Attach Film Recent Advances in Die Attach Film Frederick Lo, Maurice Leblon, Richard Amigh, and Kevin Chung. AI Technology, Inc. 70 Washington Road, Princeton Junction, NJ 08550 www.aitechnology.com Abstract: The

More information

Jacques Matteau. NanoBond Assembly: A Rapid, Room Temperature Soldering Process. Global Sales Manager. indium.us/f018

Jacques Matteau. NanoBond Assembly: A Rapid, Room Temperature Soldering Process. Global Sales Manager. indium.us/f018 Jacques Matteau Global Sales Manager NanoBond Assembly: A Rapid, Room Temperature Soldering Process jmatteau@indium.com indium.us/f014 indium.us/f018 Terminology A few key terms NanoFoil is the heat source

More information

nicrom e l e c t r o n i c

nicrom e l e c t r o n i c G E N E R A L High Performance Thick Film Resistors C A T A L O G 3 Nicrom Electronic Via Roncaglia CH - 6883 Novazzano SWITZERLAND Phone : ++4 () 9 68 99 86 Fax : ++4 () 9 68 99 86 info@nicrom-electronic.com

More information

Nano-Processing for High Voltage and High Power Devices. J. Parsey March 21, 2013

Nano-Processing for High Voltage and High Power Devices. J. Parsey March 21, 2013 Nano-Processing for High Voltage and High Power Devices J. Parsey March 21, 2013 Outline Background concepts Two nano ideas: New high voltage, high power FET device designs Application of nano-particles

More information

Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology

Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology Davide Chiola, Stephen Oliver, Marco Soldano International Rectifier, El Segundo, USA. As presented at

More information

Long-term reliability of SiC devices. Power and Hybrid

Long-term reliability of SiC devices. Power and Hybrid Long-term reliability of SiC devices Power and Hybrid Rob Coleman Business Development and Applications Manager TT electronics, Power and Hybrid Roger Tall Product Specialist Charcroft Electronics Ltd

More information

Guénaël RIBETTE. General Director

Guénaël RIBETTE. General Director Guénaël RIBETTE General Director I will explain you Different sketches in relation with current thermal applications in following Segments Semiconductor Fiber optic Automotive Aerospace & Defense Telecomunications

More information

1 Thin-film applications to microelectronic technology

1 Thin-film applications to microelectronic technology 1 Thin-film applications to microelectronic technology 1.1 Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies.

More information

Product or Process Modifications Requiring Limited CBTL Retesting to Maintain Safety Certification

Product or Process Modifications Requiring Limited CBTL Retesting to Maintain Safety Certification Product or Process Modifications Requiring Limited CBTL Retesting to Maintain Safety Certification This document sets forth a uniform approach to maintain the safety certification of products that have,

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development TSV Processing and Wafer Stacking Kathy Cook and Maggie Zoberbier, 3D Business Development Outline Why 3D Integration? TSV Process Variations Lithography Process Results Stacking Technology Wafer Bonding

More information

10 Manor Parkway, Suite C Salem, New Hampshire

10 Manor Parkway, Suite C Salem, New Hampshire Micro-Precision Technologies (MPT) is an independent manufacturer of hybrid integrated circuits, multichip modules, and high-precision thick film substrates for the military, medical, avionics, optoelectronics,

More information

Kevin O. Loutfy and Dr. Hideki Hirotsuru

Kevin O. Loutfy and Dr. Hideki Hirotsuru Advanced Diamond based Metal Matrix Composites for Thermal Management of RF Devices By Kevin O. Loutfy and Dr. Hideki Hirotsuru Agenda - Thermal Management Packaging Flange Materials - GaN High Power Densities

More information

OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES

OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES Nice, Côte d Azur, France, 27-29 September 2006 OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES Z. Radivojevic 1, K. Andersson 1, K. Hashizume 2, M. Heino 1, M. Mantysalo 3, P. Mansikkamaki 3,

More information

IMPACT OF SUBSTRATE MATERIALS ON RELIABILITY OF HIGH POWER LED ASSEMBLIES

IMPACT OF SUBSTRATE MATERIALS ON RELIABILITY OF HIGH POWER LED ASSEMBLIES As originally published in the SMTA Proceedings IMPACT OF SUBSTRATE MATERIALS ON RELIABILITY OF HIGH POWER LED ASSEMBLIES Ranjit Pandher, Ph.D. and Ravi Bhatkal, Ph.D. Alpha Assembly Solutions, a MacDermid

More information

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory PCTB Power Cycling Testbench for Power Electronic Modules PC-LAB Power Cycling Test Laboratory Technical Information PCTB power cycling test bench alpitronic has many years of experience in developing

More information

BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION. S. Sood and A. Wong

BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION. S. Sood and A. Wong 10.1149/1.2982882 The Electrochemical Society BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION S. Sood and A. Wong Wafer Bonder Division, SUSS MicroTec Inc., 228 SUSS Drive, Waterbury Center,

More information

Dow Corning WL-5150 Photodefinable Spin-On Silicone

Dow Corning WL-5150 Photodefinable Spin-On Silicone Dow Corning WL-515 Photodefinable Spin-On Silicone Properties and Processing Procedures Introduction Dow Corning WL-515 is a silicone formulation which can be photopatterned and cured using standard microelectronics

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

LED Die Attach Selection Considerations

LED Die Attach Selection Considerations LED Die Attach Selection Considerations Gyan Dutt & Ravi Bhatkal Alpha, An Alent plc Company Abstract Die attach material plays a key role in performance and reliability of mid, high and super-high power

More information

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS Novel Material for Improved Quality of RF-PA in Base-Station Applications Co-Authored by Nokia Research Center and Freescale Semiconductor Presented at 10 th International Workshop on THERMal INvestigations

More information

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May Potentialities of piezoresistive cantilever force sensors based on free standing thick films Hélène Debéda(*), Isabelle Dufour, Patrick Ginet, Claude Lucat University of Bordeaux 1, IMS Laboratory, 51

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector 1 OBJECTIVE: Performance Study of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation INTRODUCTION: Solar water heater

More information

Packaging Effect on Reliability for Cu/Low k Damascene Structures*

Packaging Effect on Reliability for Cu/Low k Damascene Structures* Packaging Effect on Reliability for Cu/Low k Damascene Structures* Guotao Wang and Paul S. Ho Laboratory of Interconnect & Packaging, TX 78712 * Work supported by SRC through the CAIST Program TRC 2003

More information

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip EPRC 12 Project Proposal Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip 15 th Aug 2012 Page 1 Introduction: Motivation / Challenge Silicon device with ultra low k

More information

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices Kato et al.: High-Temperature-Resistant Interconnections (1/6) [Technical Paper] High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C EPRC 12 Project Proposal Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C 15 th August 2012 Page 1 Motivation Increased requirements of high power semiconductor device

More information

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Challenges and Solutions for Cost Effective Next Generation Advanced Packaging H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Outline Next Generation Package Requirements ewlb (Fan-Out Wafer

More information

Carbon Nanotube Solutions for Packaging and Wireless Sensors

Carbon Nanotube Solutions for Packaging and Wireless Sensors Carbon Nanotube Solutions for Packaging and Wireless Sensors Jim Lamb*, Liyong Diao, Christopher Landorf Jordan Valley Innovation Center (JVIC) Springfield, Missouri, USA *jlamb@brewerscience.com APEC

More information

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly Selection and Parameter Optimization for Reliable TMV Pop Assembly Brian Roggeman, David Vicari Universal Instruments Corp. Binghamton, NY, USA Roggeman@uic.com Martin Anselm, Ph.D. - S09_02.doc Lee Smith,

More information

Hitachi Anisotropic Conductive Film ANISOLM AC-7106U

Hitachi Anisotropic Conductive Film ANISOLM AC-7106U HITACHI CHEMICAL DATA SHEET Hitachi Anisotropic Conductive Film ANISOLM AC-7106U 1. Standard Specification, Bonding and Storage Conditions, Reparability, and Characteristics... 1 Page 2. Precautions in

More information

20 W Power Resistor, Thick Film Technology, TO-220

20 W Power Resistor, Thick Film Technology, TO-220 20 W Power Resistor, Thick Film Technology, TO-220 DESIGN SUPPORT TOOLS Models Available click logo to get started The well known TO-220 package is compact and easy to mount. DIMENSIONS in millimeters

More information

HEAT SPREADERS. Heat Spreaders. and C-Wing

HEAT SPREADERS. Heat Spreaders. and C-Wing T-Wing TM and C-Wing Chomerics family of thin heat spreaders provides a low-cost, effective means of cooling IC devices in restricted spaces where conventional heat sinks aren t appropriate. T-Wing spreaders

More information

Nanoscale Conformable Coatings for Enhanced Thermal Conduction of Carbon Nanotube Films

Nanoscale Conformable Coatings for Enhanced Thermal Conduction of Carbon Nanotube Films Nanoscale Conformable Coatings for Enhanced Thermal Conduction of Carbon Nanotube Films Amy M. Marconnet 1, Munekazu Motoyama 1, Michael T. Barako 1, Yuan Gao 1, Scott Pozder 2, Burt Fowler 2, Koneru Ramakrishna

More information

Chip-Level and Board-Level CDM ESD Tests on IC Products

Chip-Level and Board-Level CDM ESD Tests on IC Products Chip-Level and Board-Level CDM ESD Tests on IC Products Ming-Dou Ker 1, 2, Chih-Kuo Huang 1, 3, Yuan-Wen Hsiao 1, and Yong-Fen Hsieh 3 1 Institute of Electronics, National Chiao-Tung University, Hsinchu,

More information

Tantalum Wet Electrolytic Capacitor

Tantalum Wet Electrolytic Capacitor INTRODUCTION The structure of a Tantalum Wet Electrolytic Capacitor consists of four main elements: a primary electrode (anode), dielectric, a secondary electrode system (cathode) and a wet (liquid) electrolyte.

More information

Modification of Glass Surface by Atmospheric Pressure Plasma

Modification of Glass Surface by Atmospheric Pressure Plasma WDS'7 Proceedings of Contributed Papers, Part II, 124 128, 27. ISBN 978-8-7378-24-1 MATFYZPRESS Modification of Glass Surface by Atmospheric Pressure Plasma T. Homola, A. Buček, A. Zahoranová Comenius

More information

Power Resistor for Mounting onto a Heatsink Thick Film Technology

Power Resistor for Mounting onto a Heatsink Thick Film Technology Power Resistor for Mounting onto a Heatsink Thick Film Technology DESIGN SUPPORT TOOLS click logo to get started FEATURES 800 W at 85 C bottom case temperature Wide resistance range: 0.3 to 900 k E24 series

More information

UNS:C70250, C70320 EN:CW112C

UNS:C70250, C70320 EN:CW112C Rendering date: 2018-02-01 13:53:55 http://conductivity-app.org CuNi3Si UNS:C70250, C70320 EN:CW112C Manufactures list: Diehl Metall Stiftung & CO.KG (http://www.diehlmetall.de) - CuNi3Si (SB26) KM Europa

More information

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY B. Rogers, C. Scanlan, and T. Olson Deca Technologies, Inc. Tempe, AZ USA boyd.rogers@decatechnologies.com ABSTRACT Fan-Out Wafer-Level Packaging

More information

SELECT ASTM D Hot Disk

SELECT ASTM D Hot Disk THERMAL GAP PAD Gap Pad Gap Pad is design to be used in the applications that require the minimum amount of pressure on components and high thermal conductivity. Brothers gap pad is very conformable, filled

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

5W White SPHWHTA3N500

5W White SPHWHTA3N500 Product Family Data Sheet Rev. 00 2016.11.01 111 High Power LED Ceramic Series 5W White SPHWHTA3N500 Features & Benefits Package : Silicone covered ceramic substrate Dimension : 3.5 mm x 3.5 mm Technology

More information

Innovative Substrate Technologies in the Era of IoTs

Innovative Substrate Technologies in the Era of IoTs Innovative Substrate Technologies in the Era of IoTs Dyi- Chung Hu 胡迪群 September 4, 2015 Unimicron Contents Introduction Substrate Technology - Evolution Substrate Technology - Revolution Glass substrate

More information

Global Test solutions Conception and production of probe cards for testing microchips

Global Test solutions Conception and production of probe cards for testing microchips Global Test solutions Conception and production of probe cards for testing microchips All Technologies Synergie Cad Probe developed differents solution of test, it is became a leader in the design and

More information

Electronic Applications Division. CeramCool The Ceramic System for High Power Packaging. Wherever things get hot

Electronic Applications Division. CeramCool The Ceramic System for High Power Packaging. Wherever things get hot Electronic Applications Division CeramCool The Ceramic System for High Power Packaging Wherever things get hot T H E C E R A M I C E X P E R T S Why ceramics? Ceramic combines two crucial characteristics:

More information

A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring

A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 1-29-2012 A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring

More information

PLCC Sockets Through Hole - M43 Series

PLCC Sockets Through Hole - M43 Series Through Hole - M43 Series PART NUMBER LEGEND M43X-XX-XX NUMBER OF CONTACTS 20, 28, 32, 44, 52, 68, 84, 100 (-10 Style) 44, 52, 68, 84 (-11 Style) STYLE -10 Standard wall thickness, through hole -11 Thin

More information