STUDY OF INFLUENCE OF IN SITU CLEANING PROCESS ON THE QUALITY OF PECVD SiO 2 / LPCVD POLYSILICON INTERFACE

Size: px
Start display at page:

Download "STUDY OF INFLUENCE OF IN SITU CLEANING PROCESS ON THE QUALITY OF PECVD SiO 2 / LPCVD POLYSILICON INTERFACE"

Transcription

1 STUDY OF INFLUENCE OF IN SITU CLEANING PROCESS ON THE QUALITY OF PECVD SiO 2 / LPCVD POLYSILICON INTERFACE Abstract ANA NEILDE R. DA SILVA, NILTON MORIMOTO, OLIVIER BONNAUD* neilde@lsi.usp.br - morimoto@lsi.usp.br - bonnaud@univ-rennes1.fr L.S.I. - E.P.U.S.P. - São Paulo - S.P. - Brasil Fax: *G.M.V. - University of Rennes - France The influence of in situ wafer cleaning process has been studied in the quality of TEOS-PECVD silicon oxide deposited in a home made cluster tool system. We used MOS capacitor structure with and without polysilicon layer to perform the C-V measurements. The results showed that in situ cleaning process cause damages in the silicon surfaces. Introduction Deposition of silicon dioxide films at low temperature by the Plasma Enhanced Chemical Vapor Deposition (PECVD) has large applications on silicon integrated circuits technology. [1-4] Silicon oxide deposition from tetraethylorthosilicate (TEOS) provides excellent conformality, which is not achievable when silane is used as silicon source. [5] Nevertheless, poor electrical characteristics is reported for silicon oxide films deposited by TEOS-PECVD; due to the problems related with process parameters control as pressure, temperature, TEOS/O 2 ratio, etc. [6-8]. Also, the Si/SiO 2 interface plays a role in the electrical behavior of SiO 2 films [3,7]. To improve the interface Si/SiO 2 quality, we used two in situ cleaning process before the TEOS silicon oxide deposition. This paper shows the influence of these cleaning process in the electrical behavior of MOS capacitors. Experimental Silicon substrates used for TEOS PECVD oxide deposition were 51 mm, n-type <100>; 1-20 Ω.cm. Figure 1 shows the MOS capacitors structures used in this experiment. Al Undoped poly-si SiO 2-TEOS Si-n Al SiO 2-TEOS Si-n Figure 1: Capacitors structures used in this experiment.

2 It was used the follows wafer cleaning processes: Normal - conventional RCA cleaning. CF 4 +O 2 - in situ cleaning process using CF 4 -O 2 plasma in the following conditions: 100 sccm CF 4, 20 sccm O 2, work pressure 0.5 Torr, RF Power 100 W during 1 min. O 2 - in situ treatment of the silicon substrate using O 2 plasma in the following conditions: 20 sccm O 2, work pressure 0.5 Torr, RF Power 100 W during 1 min. Table I shows the deposition process parameters used in TEOS-PECVD silicon oxide deposition carried out in a home made cluster tool system [4]. Table I: Deposition process parameters used for TEOS PECVD silicon oxide deposition. RF power (W) 500 Temperature ( C) 360 Distance between electrodes (mm) 15 Oxygen flux (sccm) 200 TEOS flux (sccm) 10 Process pressure (Torr) 8 Thickness (nm) 50 The TEOS PECVD silicon oxide thickness and refractive index measurements were made in a Rudolph Research ellipsometer model Auto-El-NIR3. Before TEOS PECVD deposition process, it was made a chamber wall cleaning process using a plasma of a mixture of 100 sccm CF 4 and 20 sccm O 2. This procedure ensures the same initial conditions for all deposition process. The process for polysilicon was carried out in a home made LPCVD (Low Pressure CVD) system initially in the following conditions: work pressure1,5 Torr, 50 sccm SiH 4, 550 C, deposition rate of 5 nm/s to have an amorphous film. After the deposition process, the amorphous thin film was annealed in the same furnace, during 12 hs at 600 C in vacuum, to obtain a polycrystalline layer. To remove the polysilicon layer from the backside of the wafer a SF 6 plasma etching process has been performed in the following conditions 20 sccm SF 6, 30 mtorr, 50 W, 1 min. The evaporated Aluminum thin film had ~300 nm thick. The MOS capacitors (area=2,25 µm 2 ) was patterned by conventional lithography process. Capacitance Voltage- High Frequency (CV-HF) measurements were performed in a HP CV-4140 analysis station.

3 Results and Discussion Figure 2 shows the CV-HF curves obtained from the capacitors structures. Figure 2: CV-HF curves from SiO 2 -TEOS/Al and SiO 2 -TEOS/Si-poli/AL structures

4 Table II shows the electrical parameters (C fb -Flat Band Capacitance, V fb -Flat Band Voltage and N ss -interface charge density), calculated from the CV-HF curves. Table II: Electrical parameters calculated from the CV-HF curves Surface Sample SiO 2 thickness Refractive C fb (pf) N ss V fb (V) preparation measured (nm) Index (charge/cm 2 ) Normal F1(poly) E F3(Al) E CF 4 +O 2 F4(poly) E11-1 F6(Al) E O 2 F7(poly) E F9(Al) E Figure 3 shows a histogram comparing the N ss values for each wafer cleaning procedure The highest N ss value was obtained for sample F9, that was treated with in situ O 2 plasma. The Al/SiO 2 structure showed higher N ss values compared with SiO 2 /Poly/ Al. 5,0E+11 Nss (charge/cm -2 ) 4,0E+11 3,0E+11 2,0E+11 1,0E+11 poly-si Al 0,0E+00 Normal CF4+O2 O2 Figure 3: Histogram comparing the Nss values obtained for each wafer cleaning procedure. The results observed in figure 3 related to the differences between capacitors structures can be attributed to the two thermal steps which the SiO 2 films were submitted during polysilicon deposition. SiO 2 films deposited by CVD and submitted to thermal treatment for several hours can bear modifications on the film structure and composition and consequently the electrical behavior of these films are changed [4,7,9] also when TEOS is used as a Si precursor, some radicals like Si-OH and C-O can be incorporated into the film bulk. [10]

5 Thermal processes can either eliminate the Si-OH and C-O radicals that are trapped in the film during TEOS-PECVD SiO 2 deposition process and/or modify the SiO 2 structure. However, this process depends on temperature, time of thermal treatment and on radical nature. These mechanisms still not well understood [9-11]. We can conclude that the lower N ss value obtained for the polysilicon capacitors should be due to the thermal steps during LPCVD polysilicon deposition process. The quality and/or the condition of the silicon wafer surface can influence the deposition process and the oxide quality. [3,7] Silicon wafer cleaned with conventional RCA process with final dip in HF solution, presents mainly Si-H on the surface. This surface can improve the nucleation sites of the deposition process and can lower the interface charges [12]. O 2 plasma is used before the PECVD-TEOS SiO 2 deposition, to grow a thin oxide layer over the wafer surface. In this case, we can improve the quality of the interface Si/SiO 2. However, we also increase the density of the impurities damage in the Si/SiO 2 interface. In our case these impurities increased the Nss values as observed in the figure 3. [3,8] A CF 4 -O 2 plasma treatment could reduce the influence of the native oxide producing a cleaner surface. However, CF 4 plasma also produce organic polymers which can be deposited over the silicon wafer. These residues act as electrical charges in the Si/SiO 2 interface. Plasma treatments performed over silicon wafer surfaces can also increase the roughness by ions bombardments, which agrees with the results. [13] Conclusions We showed that the SiO 2 film structure and electrical behavior are modified by thermal treatments. The thermal steps used during the polysilicon deposition, improve the electrical behavior of the SiO 2 -TEOS films The silicon wafer surface quality is influenced by the cleaning treatment that are performed before SiO 2 films deposition. We report that the regular chemical cleaning process (RCA) is better than the in situ plasma treatments Acknowledgments We are grateful to David Briand for the LPCVD polysilicon deposition, to Victor Sonnenberg for the discussions on electrical measurements, to Carlos Carvalho and Gilberto Nishioka for the SiO 2 deposition processes.

6 This work was supported by Finep, FAPESP, and CNPQ. References 1. K.Maeda and S.M. Fisher; CVD TEOS/O 3 Development history and applications ; Solid State Technology, June, 1993, p C.Y.Lu, et al; The Chalenge of the ULSI Semiconductor Memory Interconnection Technology ; Proceedings of the Materials Research Society Symposium, vol.427, april S.K.Ray, et al; Electrical Properties of Silicon Dioxide Deposited at Low Temperature by Metal-Organic Microwave Plasma CVD Technique Electronics Letters, July, 1990, vol.26 n 14, p N.I.Morimoto and J.W.Swart, in Proc. V Symp. Rapid Thermal and Integrated Processing, MRS, Vol 429, p.263, San Francisco, T. Sorita, et al; The Formation Mechanism and Step Coverage Quality of Tetraethylorthosilicate-SiO 2 Films Studied by the Micro/Macrocavity Method, J. Electrochem. Soc. Vol. 140, n 10, october 1993, p C.Pavalescu et al.; High Frequency C-V Investigation of Metal-Oxide-Semiconductor Capacitors Prepared by Low Temperature subatmospheric Pressure Chemical Vapor Deposition of SiO 2 Films on Silicon Substrates ; Thin Solid Films, 217(1992), W.J.Patrick, et al.; Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Films Using Tetraethoxysilane and oxygen: Characterization and Properties of Films. J. Electrochemical Soc., vol.139, n 9,sep.1992, p A.C. Calrson, et al.; Deposition Method to Control Plasma-Enhanced Chemical Vapor Deposition tetraethylorthosilicate Oxide Charge ; J. Electrochem. Soc., vol.140, n 3, march 1993, p P. Lange, et al; Electrical and Structural Properties of Ultrathin SiO 2 Gate Dielectrics Prepared Under Various Conditions ; J. Electrochem. Soc., vol.139, n 5, may 1992, p S.C. Deshmukh, et al; Investigation of Low Temperature SiO2 Plasma Enhanced Chemical Vapor Deposition ; J.Vac.Sci.Technol.B 14(2), mar/apr, 1996; p H.J. Schliwinski, et al; Thermal Annealing Effect on the Mechanical Properties of Plasma-Enhanced Chemical Vapor deposition Silicon Oxide Films ; J. Electrochem. Soc., vol.139, n 6, june 1992, p S.G. dos Santos Filho, et al; The Deposition and Removal of Surfaces Contaminants from Silicon Wafer by Means of a Diluted HF Dip Followed or not by an Isopropyl Alcohol Boil ; annais of the IX Simposium of the Brasilian Microelectronics Society, Rio de Janeiro, 1993, p A.K.Stamper, et al.; Plasma-induced gate oxide charging issues for sub-0,5µm complemetary metal-oxide-semiconductor technologies ; J.Vac.Sci.Technol.B 13(3), jul/aug. 1995, p

Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application

Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application ABSTRACT D. A. P. Bulla and N. I. Morimoto Laboratório de Sistemas Integráveis da EPUSP São Paulo - S.P. -

More information

PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS

PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS Eliphas W. Simões 1, Rogério Furlan 2, Nilton I. Morimoto 3, Olivier Bonnaud 4*, Ana N. R. da Silva 5, Maria L. P.

More information

Highly Reliable Low Temperature Ultrathin Oxides Grown Using N 2 O Plasma

Highly Reliable Low Temperature Ultrathin Oxides Grown Using N 2 O Plasma Highly Reliable Low Temperature Ultrathin Oxides Grown Using N 2 O Plasma Jam-Wem Lee 1, Yiming Li 1,2, and S. M. Sze 1,3 1 Department of Nano Device Technology, National Nano Device Laboratories, Hsinchu,

More information

ECSE-6300 IC Fabrication Laboratory Lecture 4: Dielectrics and Poly-Si Deposition. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 4: Dielectrics and Poly-Si Deposition. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 4: Dielectrics and Poly-Si Deposition Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Chapter 7 Polysilicon and Dielectric Film Deposition

Chapter 7 Polysilicon and Dielectric Film Deposition Chapter 7 Polysilicon and Dielectric Film Deposition Professor Paul K. Chu Thin Films in Microelectronics Polycrystalline silicon or polysilicon Doped or undoped silicon dioxide Stoichiometric or plasma-deposited

More information

Brian Izzio 5th Year Microelectronic Engineering Student. Rochester Institute of Technology

Brian Izzio 5th Year Microelectronic Engineering Student. Rochester Institute of Technology CAPACITAWZE-VOI~TAGE characterization FOR POLYSILICON GATE MOS CAPACITORS DJTRODUcTION Brian Izzio 5th Year Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT The effects of

More information

LOW-TEMPERATURE poly-si (LTPS) thin-film transistors

LOW-TEMPERATURE poly-si (LTPS) thin-film transistors IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 1, JANUARY 2004 63 Performance and Reliability of Low-Temperature Polysilicon TFT With a Novel Stack Gate Dielectric and Stack Optimization Using PECVD

More information

Chapter 4. UEEP2613 Microelectronic Fabrication. Oxidation

Chapter 4. UEEP2613 Microelectronic Fabrication. Oxidation Chapter 4 UEEP2613 Microelectronic Fabrication Oxidation Prepared by Dr. Lim Soo King 24 Jun 2012 Chapter 4...113 Oxidation...113 4.0 Introduction... 113 4.1 Chemistry of Silicon Dioxide Formation... 115

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Applied Surface Science 212 213 (2003) 388 392 Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Marcus A. Pereira, José A. Diniz, Ioshiaki Doi *, Jacobus W. Swart

More information

Instructor: Dr. M. Razaghi. Silicon Oxidation

Instructor: Dr. M. Razaghi. Silicon Oxidation SILICON OXIDATION Silicon Oxidation Many different kinds of thin films are used to fabricate discrete devices and integrated circuits. Including: Thermal oxides Dielectric layers Polycrystalline silicon

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign Outline Definition of surface micromachining Most common surface micromachining materials - polysilicon

More information

Residual stress analysis of SiO films deposited by

Residual stress analysis of SiO films deposited by Ž. Surface and Coatings Technology 131 000 153 157 Residual stress analysis of SiO s deposited by plasma-enhanced chemical vapor deposition Jin-Kyung Choi a,, J. Lee a, Ji-Beom Yoo a, Jong-Sun Maeng b,

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

1. Introduction. 2. Experiments. Paper

1. Introduction. 2. Experiments. Paper Paper Novel Method of Improving Electrical Properties of Thin PECVD Oxide Films by Fluorination of Silicon Surface Region by RIE in RF CF 4 Plasma Małgorzata Kalisz, Grzegorz Głuszko, and Romuald B. Beck

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Materials Characterization

Materials Characterization Materials Characterization C. R. Abernathy, B. Gila, K. Jones Cathodoluminescence (CL) system FEI Nova NanoSEM (FEG source) with: EDAX Apollo silicon drift detector (TE cooled) Gatan MonoCL3+ FEI SEM arrived

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Doping and Oxidation

Doping and Oxidation Technische Universität Graz Institute of Solid State Physics Doping and Oxidation Franssila: Chapters 13,14, 15 Peter Hadley Technische Universität Graz Institute of Solid State Physics Doping Add donors

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

Merle D. Yoder, Jr. 5th Year Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT

Merle D. Yoder, Jr. 5th Year Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT LOW TEMPERATURE DEPOSITION OF FILMS BY ECR INT~0DUCTION Merle D. Yoder, Jr. 5th Year Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT SiO films of high quality have been depositeä

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

Physical Vapor Deposition (PVD) Zheng Yang

Physical Vapor Deposition (PVD) Zheng Yang Physical Vapor Deposition (PVD) Zheng Yang ERF 3017, email: yangzhen@uic.edu Page 1 Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information

Lecture 8. Deposition of dielectrics and metal gate stacks (CVD, ALD)

Lecture 8. Deposition of dielectrics and metal gate stacks (CVD, ALD) Lecture 8 Deposition of dielectrics and metal gate stacks (CVD, ALD) Thin Film Deposition Requirements Many films, made of many different materials are deposited during a standard CMS process. Gate Electrodes

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition ESS4810 Lecture Fall 2010 Introduction Chemical vapor deposition (CVD) forms thin films on the surface of a substrate by thermal decomposition and/or reaction of gas compounds

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Semiconductor Manufacturing Technology. Semiconductor Manufacturing Technology

Semiconductor Manufacturing Technology. Semiconductor Manufacturing Technology Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 2001 by Prentice Hall Chapter 11 Deposition Film Layers for an MSI Era NMOS Transistor Topside Nitride Pre-metal oxide Sidewall

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information

A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process

A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process Chapter 3 A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process 3.1 Introduction Low-temperature poly-si (LTPS) TFTs

More information

Microelectronic Device Instructional Laboratory. Table of Contents

Microelectronic Device Instructional Laboratory. Table of Contents Introduction Process Overview Microelectronic Device Instructional Laboratory Introduction Description Flowchart MOSFET Development Process Description Process Steps Cleaning Solvent Cleaning Photo Lithography

More information

Be careful what you wish for

Be careful what you wish for Be careful what you wish for Four Point Probe Key measurement tool in microelectronics fabrication What is Four Point Probing Four Point Probing is a method for measuring the resistivity of a substance.

More information

Isolation of elements

Isolation of elements 1 In an IC, devices on the same substrate must be isolated from one another so that there is no current conduction between them. Isolation uses either the junction or dielectric technique or a combination

More information

Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric

Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric K. Matano 1, K. Funamizu 1, M. Kouda 1, K. Kakushima 2, P. Ahmet 1, K. Tsutsui 2, A. Nishiyama 2, N. Sugii

More information

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each

More information

Amorphous and Polycrystalline Thin-Film Transistors

Amorphous and Polycrystalline Thin-Film Transistors Part I Amorphous and Polycrystalline Thin-Film Transistors HYBRID AMORPHOUS AND POLYCRYSTALLINE SILICON DEVICES FOR LARGE-AREA ELECTRONICS P. Mei, J. B. Boyce, D. K. Fork, G. Anderson, J. Ho, J. Lu, Xerox

More information

Field effect transistor sensors for liquid media

Field effect transistor sensors for liquid media Field effect transistor sensors for liquid media Water micropollutants: from detection to removal November 26-28, 2018 Orléans 1 OUTLINE Some liquid sensors Dual Gate FET Examples Process of Dual Gate

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Fabrication of the Amorphous Silicon Thin Layers in HIT Solar Cells

Fabrication of the Amorphous Silicon Thin Layers in HIT Solar Cells Fabrication of the Amorphous Silicon Thin Layers in HIT Solar Cells Abstract The intrinsic and n-type amorphous silicon (a-si) thin layers of the p-type substrate HIT solar cells were fabricated by plasma

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica Microelettronica Planar Technology for Silicon Integrated Circuits Fabrication 26/02/2017 A. Neviani - Microelettronica Introduction Simplified crosssection of an nmosfet and a pmosfet Simplified crosssection

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

Structural changes of polycrystalline silicon layers during high temperature annealing

Structural changes of polycrystalline silicon layers during high temperature annealing Structural changes of polycrystalline silicon layers during high temperature annealing D. Lysáček, L. Válek ON SEMICONDUCTOR CZECH REPUBLIC, Rožnov p. R., david.lysacek@onsemi.com Abstract The structure

More information

200mm Next Generation MEMS Technology update. Florent Ducrot

200mm Next Generation MEMS Technology update. Florent Ducrot 200mm Next Generation MEMS Technology update Florent Ducrot The Most Exciting Industries on Earth Semiconductor Display Solar 20,000,000x reduction in COST PER TRANSISTOR in 30 years 1 20x reduction in

More information

Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film

Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film layer at the surface Typically gas phase reactions

More information

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant substrate Creates latch up protection for CMOS Buried Epi

More information

Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO 2 (glass) Major factor in making

Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO 2 (glass) Major factor in making Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO (glass) Major factor in making Silicon the main semiconductor Grown at high temperature in

More information

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents UNIT I INTRODUCTION: Introduction to IC Technology MOS, PMOS, NMOS, CMOS & BiCMOS technologies. BASIC ELECTRICAL PROPERTIES : Basic Electrical

More information

A Nano-thick SOI Fabrication Method

A Nano-thick SOI Fabrication Method A Nano-thick SOI Fabrication Method C.-H. Huang 1, J.T. Cheng 1, Y.-K. Hsu 1, C.-L. Chang 1, H.-W. Wang 1, S.-L. Lee 1,2, and T.-H. Lee 1,2 1 Dept. of Mechanical Engineering National Central University,

More information

Semiconductor Device Fabrication

Semiconductor Device Fabrication 5 May 2003 Review Homework 6 Semiconductor Device Fabrication William Shockley, 1945 The network before the internet Bell Labs established a group to develop a semiconductor replacement for the vacuum

More information

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant substrate Creates latch up protection for CMOS Buried Epi

More information

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB ME 141B: The MEMS Class Introduction to MEMS and MEMS Design Sumita Pennathur UCSB Outline today Introduction to thin films Oxidation Deal-grove model CVD Epitaxy Electrodeposition 10/6/10 2/45 Creating

More information

Lecture 10. Metallization / Back-end technology (BEOL)

Lecture 10. Metallization / Back-end technology (BEOL) Lecture 10 Metallization / Back-end technology (BEOL) Lecture 9: Metallization and BEOL Metallization Technology Evaporation Sputtering Back End Of the Line (BEOL) ITRS Requirements Evolution of Metallization

More information

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon April 2009 A Deep Silicon RIE Primer 1.0) Etching: Silicon does not naturally etch anisotropically in fluorine based chemistries. Si

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Lecture #18 Fabrication OUTLINE

Lecture #18 Fabrication OUTLINE Transistors on a Chip Lecture #18 Fabrication OUTLINE IC Fabrication Technology Introduction the task at hand Doping Oxidation Thin-film deposition Lithography Etch Lithography trends Plasma processing

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

X-Ray Reflectivity Study of Hafnium Silicate Thin Films Prepared by Thermal Chemical Vapor Deposition

X-Ray Reflectivity Study of Hafnium Silicate Thin Films Prepared by Thermal Chemical Vapor Deposition X-Ray Reflectivity Study of Hafnium Silicate Thin Films Prepared by Thermal Chemical Vapor Deposition Hideyuki YAMAZAKI, Advanced LSI Technology Laboratory, Toshiba Corporation hideyuki.yamazaki@toshiba.co.jp

More information

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules 2. CMOS Fabrication, Layout, Design Rules Last module: Introduction to the course How a transistor works CMOS transistors This module: CMOS Fabrication Design Rules CMOS Fabrication CMOS transistors are

More information

Development of low temperature oxidation for crystalline silicon thin film transistor applications

Development of low temperature oxidation for crystalline silicon thin film transistor applications Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2011 Development of low temperature oxidation for crystalline silicon thin film transistor applications Ryan Rettmann

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Polycrystalline Silicon Thin-Film Transistors Fabricated by Defect Reduction Methods

Polycrystalline Silicon Thin-Film Transistors Fabricated by Defect Reduction Methods IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 12, DECEMBER 2002 2217 Polycrystalline Silicon Thin-Film Transistors Fabricated by Defect Reduction Methods H. Watakabe and T. Sameshima Abstract Fabrication

More information

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to Supporting Information: Substrate preparation and SLG growth: All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to aid in visual inspection of the graphene samples. Prior

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001) APPLICATION NOTE State of the art quality of a Ox interfacial passivation layer formed on (001) Summary A number of research efforts have been made to realize Metal-Oxide-Semiconductor Field Effect Transistors

More information

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook:

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook: HOMEWORK 4 and 5 March 15, 2009 Homework is due on Monday March 30, 2009 in Class. Chapter 7 Answer the following questions from the Course Textbook: 7.2, 7.3, 7.4, 7.5, 7.6*, 7.7, 7.9*, 7.10*, 7.16, 7.17*,

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin

Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Agenda Last module: Introduction to the course How a transistor works CMOS transistors This

More information

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are:

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: Chapter 4 1 CHAPTER 4: Oxidation Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: 1. mask against implant or diffusion of dopant into silicon 2. surface passivation

More information

INTEGRATED-CIRCUIT TECHNOLOGY

INTEGRATED-CIRCUIT TECHNOLOGY INTEGRATED-CIRCUIT TECHNOLOGY 0. Silicon crystal growth and wafer preparation 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition 1.4. Etching 1.5. Diffusion 1.6 Backend: assembly,

More information

MEMS Surface Fabrication

MEMS Surface Fabrication ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Surface Fabrication Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Effects of post-metallization annealing of high-k dielectric thin films grown by MOMBE

Effects of post-metallization annealing of high-k dielectric thin films grown by MOMBE Microelectronic Engineering 77 (2005) 48 54 www.elsevier.com/locate/mee Effects of post-metallization annealing of high-k dielectric thin films grown by MOMBE Minseong Yun a, Myoung-Seok Kim a, Young-Don

More information

EE 434 Lecture 9. IC Fabrication Technology

EE 434 Lecture 9. IC Fabrication Technology EE 434 Lecture 9 IC Fabrication Technology Quiz 7 The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 /, determine the resistance between nodes A and

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

Study on the hydrogenated ZnO-based thin film transistors

Study on the hydrogenated ZnO-based thin film transistors Final Report Study on the hydrogenated ZnO-based thin film transistors To Dr. Gregg Jessen Asian Office of Aerospace Research & Development April 30th, 2011 Jae-Hyung Jang School of Information and Communications

More information

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(1) Substrate Fan Wu Microelectronics Center, Medtronic Inc., Tempe, AZ 85261 James E. Morris Department of Electrical

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 13: THERMAL- OXIDATION of SILICON 2004 by LATTICE PRESS Chapter 13: THERMAL-OXIDATION of SILICON n CHAPTER CONTENTS Applications of Thermal Silicon-Dioxide Physical

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time IC Fabrication Technology Crystal Preparation

More information

Chapter 5 Thermal Processes

Chapter 5 Thermal Processes Chapter 5 Thermal Processes 1 Topics Introduction Hardware Oxidation Diffusion Annealing Post-Implantation Alloying Reflow High Temp CVD Epi Poly Silicon Nitride RTP RTA RTP Future Trends 2 Definition

More information

FABRICATION of MOSFETs

FABRICATION of MOSFETs FABRICATION of MOSFETs CMOS fabrication sequence -p-type silicon substrate wafer -creation of n-well regions for pmos transistors, -impurity implantation into the substrate. -thick oxide is grown in the

More information

Chapter 2. Density 2.65 g/cm 3 Melting point Young s modulus Tensile strength Thermal conductivity Dielectric constant 3.

Chapter 2. Density 2.65 g/cm 3 Melting point Young s modulus Tensile strength Thermal conductivity Dielectric constant 3. Chapter 2 Thin Film Materials Thin films of Silicon dioxide, Silicon nitride and Polysilicon have been utilized in the fabrication of absolute micro pressure sensor. These materials are studied and discussed

More information

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook CMOS Fabrication Dr. Bassam Jamil Adopted from slides of the textbook CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different

More information

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb*

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb* International Forum on Energy, Environment and Sustainable Development (IFEESD 2016) Effect of annealing temperature on the electrical properties of HfAlO thin films Chun Lia, Zhiwei Heb* Department of

More information

Low temperature formation of nc-si by ICP-CVD with internal antenna. A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata

Low temperature formation of nc-si by ICP-CVD with internal antenna. A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata Low temperature formation of nc-si by ICP-CVD with internal antenna A. Tomyo, H. Kaki, E. Takahashi, T. Hayashi, K. Ogata Process Research Center, R & D Laboratories, Nissin Electric Co., Ltd., Umezu,

More information

PREMETAL PLANARIZATION USING SPIN-ON-DIELECTRIC. Fred Whitwer, Tad Davies, Craig Lage National Semiconductor Corp., Puyallup, WA, 98373

PREMETAL PLANARIZATION USING SPIN-ON-DIELECTRIC. Fred Whitwer, Tad Davies, Craig Lage National Semiconductor Corp., Puyallup, WA, 98373 PREMETAL PLANARIZATION USING SPIN-ON-DIELECTRIC Fred Whitwer, Tad Davies, Craig Lage National Semiconductor Corp., Puyallup, WA, 98373 ABSTRACT A silicate type spin-on-glass (SOG) has been used to planarize

More information

Low temperature amorphous and nanocrystalline silicon thin film transistors. deposited by Hot-Wire CVD on glass substrate

Low temperature amorphous and nanocrystalline silicon thin film transistors. deposited by Hot-Wire CVD on glass substrate Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate M. Fonrodona 1, D. Soler 1, J. Escarré 1, F. Villar 1, J. Bertomeu 1 and J. Andreu

More information

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition Mat. Res. Soc. Symp. Proc. Vol. 784 2004 Materials Research Society C7.7.1 Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical

More information

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS Simple and cost-effective introduction of PERC technology into the mass production of solar cells Kerstin Strauch, Florian Schwarz, Sebastian Gatz 1 Introduction

More information