State of the art in silicon immersed gratings for space - Aaldert van Amerongen, Hélène Krol, Catherine Grèzes-Besset, Tonny Coppens, Ianjit Bhatti,

Size: px
Start display at page:

Download "State of the art in silicon immersed gratings for space - Aaldert van Amerongen, Hélène Krol, Catherine Grèzes-Besset, Tonny Coppens, Ianjit Bhatti,"

Transcription

1 State of the art in silicon immersed gratings for space - Aaldert van Amerongen, Hélène Krol, Catherine Grèzes-Besset, Tonny Coppens, Ianjit Bhatti, Dan Lobb, Bram Hardenbol, Ruud Hoogeveen

2 Climate research by SWIR spectroscopy from space CO 2, CH 4 and H 2 O and HDO observable in m range SWIR 1 at 1.6 micrometer (CO 2, CH 4 ) SWIR 2 at 2.0 micrometer (CO 2, H 2 O) SWIR 3 at 2.3 micrometer (CH 4, H 2 O, HDO, CO) 2

3 Outline Why immersed gratings? How are these gratings made? TROPOMI immersed grating Optical coatings Developments for future missions 3

4 Why immersed gratings? Atmospheric science asks for medium to high resolution spectroscopy in the SWIR wavelength range Classical grating spectrometers become too large Solution: immersed grating

5 Volume reduction

6 Silicon n=3.4, n 3 =40 transmission spectrum high purity mono crystals available

7 V-groove etching <111> <100> potassium hydroxide: etching along <100> 100 times faster than <111> Electron micrograph of etched grating

8 TROPOMI SWIR spectrometer optical layout 8

9 Immersed grating design period = 2500 nm order = -6 blaze = 55 aoi = 60 area = mm 2 > 60% Pol. < 10% 9

10 Production Etch grooves in silicon Industry lithography technology High-end optical manufacturing technology Lean development strategy: concurrent development quick improvement cycles reduce waste

11 Manufacturing flow 11

12 TROPOMI Results realized remark profile perfect Efficiency curve as simulated Efficiency 65 % polarization 8 % ghosts none Stray light 10-5 Beyond PSF WFE 350 nm rms After focus correction 12

13 Efficiency Average = 65 % Polarization = 8 % 13

14 Stray light

15 Optical coating technology Dual Ion Beam Sputtering DIBS deposition technique Ion sputtering of target and substrate yields dense coating insensitive to temperature and atmospheric conditions High level of control by realtime in-situ visible and infrared optical monitoring Paper 100 Hélène Krol at al 15

16 All tests were passed successfully. Spectral measurements and the results of the qualification tests show the reliability of these multi-dielectric and metal-dielectric functions f Optical coating technology design and performance Solution: Multilayer dielectric coating 16

17 All tests were passed successfully. Spectral measurements and the results of the qualification tests show the reliability of these multi-dielectric and metal-dielectric functions f Optical coating technology design and performance 2 On the third facet R<1.5% for 2280nm to 2410nm at 0 to 30 AoI in the silicon prism medium Solution: Metallic-dielectric multilayer coating 17

18 Optical coating technology qualification for space Thermal: 20 cycles -80 C; +50 C at ambient pressure and under N 2 atmosphere Humidity: 48 hours; 40 C and 95% humidity Adhesion: ISO , test 02, level 02 Abrasion: ISO , test 01, level 01 Protons: 40 MeV, and a flux of cm -2 Gamma: 60 krads total radiation dose All tests were passed successfully 18

19 Ongoing developments for future climate missions Needs for the future 1.6 m, 2.0 m and 2.3 m >60%; polarization < 10% Low stray light and low WFE Wafer-to-prism bonding Faster, cheaper, better process Blazed gratings Increased application range High line-density First-order gratings for high efficiency and low stray light Arbitrary blaze angle prototype realized 200 nm lines and spaces prototype realized 19

20 Lean manufacturing flow Create prism Bond grating to prism 20

21 METIS: A Mid-infrared E-ELT Imager and Spectrograph METIS the third planned instrument for the E-ELT contains: Thermal infrared diffractionlimited imager integral field unit spectrograph ( m) with a resolution of SRON leads consortium that manufactures a Demonstrator IG for METIS 140 mm grating Diffraction limited performance

22 Conclusion We are the suppliers for silicon IGs for space We have a reliable and efficient manufacturing flow for IG's TROPOMI gratings are at TRL 8: fully qualified Ongoing grating developments for future missions e.g. Sentinel 5 planned for TRL 5 early

23 Lithography Polish silicon disk to high flatness and smoothness Deposit silicon nitride masking layer Spin on photoresist Pattern photoresist using UV lithography Plasma etch silicon nitride Remove photoresist, anisotropic etch of silicon in KOH Remove silicon nitride mask in HF

24 Mounting 24

Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute

Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute Figure 6. Rare-gas atom-beam diffraction patterns. These results were obtained by Wieland Schöllkopf and Peter Toennies at the Max-Planck Institute in Göttingen, Germany, using a freestanding, 100nm-period

More information

Spectrometer gratings based on direct-write e-beam lithography

Spectrometer gratings based on direct-write e-beam lithography Spectrometer gratings based on direct-write e-beam lithography U.D. Zeitner, T. Flügel-Paul, T. Harzendorf, M. Heusinger, E.-B. Kley Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena, Germany

More information

Low aberration monolithic diffraction gratings for high performance optical spectrometers

Low aberration monolithic diffraction gratings for high performance optical spectrometers Low aberration monolithic diffraction gratings for high performance optical spectrometers P. Triebel 1, T. Diehl 1, M. Burkhardt 2, L. Erdmann 2, A. Kalies 2,A. Pesch 2, A. Gatto 2 1 Carl Zeiss Spectroscopy

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

An innovative approach to coatings on large optics

An innovative approach to coatings on large optics An innovative approach to coatings on large optics OpTIC Strategic Conference 16 th -17 th November 2010 "Photographie: Philippe Bourgeois" CILAS - Établissement Marseille Z.I. St Mitre 15 avenue de la

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers Anti-Reflection Custom Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition Anti-Reflection on Optical Fibers OptoSigma supplies a wide selection of optical

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Top Side Conductor vacuum deposition Aluminum sputter deposit in Argon plasma CVC 601-sputter deposition

More information

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller Webpage: http://www.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Introduction to Lithography

Introduction to Lithography Introduction to Lithography G. D. Hutcheson, et al., Scientific American, 290, 76 (2004). Moore s Law Intel Co-Founder Gordon E. Moore Cramming More Components Onto Integrated Circuits Author: Gordon E.

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Electron Beam Column electron gun beam on/of control magnetic deflection

More information

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) Optical Coatings Photonics 4 Luxury Coatings 21.06.2017, Genève Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) RhySearch The Research- and Innovation Center in the Rhine Valley RhySearch

More information

Understanding Optical Coatings For Military Applications

Understanding Optical Coatings For Military Applications Understanding Optical Coatings For Military Applications By Trey Turner, Chief Technology Officer, REO Virtually all optical components used in military applications, such as target designation, rangefinding

More information

ise J. A. Woollam Ellipsometry Solutions

ise J. A. Woollam Ellipsometry Solutions ise J. A. Woollam Ellipsometry Solutions Capabilities The ise is a new in-situ spectroscopic ellipsometer developed for real-time monitoring of thin film processing. Using our proven technology, the ise

More information

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Shunquan Wang, Changhe Zhou, Yanyan Zhang, and Huayi Ru We describe the design, fabrication,

More information

Welcome MNT Conference 1 Albuquerque, NM - May 2010

Welcome MNT Conference 1 Albuquerque, NM - May 2010 Welcome MNT Conference 1 Albuquerque, NM - May 2010 Introduction to Design Outline What is MEMs Design General Considerations Application Packaging Process Flow What s available Sandia SUMMiT Overview

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2003) Fabrication Technology, Part I Agenda: Oxidation, layer deposition (last lecture) Lithography Pattern Transfer (etching) Impurity Doping Reading: Senturia,

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 205 Supplementary Information for: Single-digit-resolution nanopatterning with extreme ultraviolet

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Process Flow in Cross Sections

Process Flow in Cross Sections Process Flow in Cross Sections Process (simplified) 0. Clean wafer in nasty acids (HF, HNO 3, H 2 SO 4,...) --> wear gloves! 1. Grow 500 nm of SiO 2 (by putting the wafer in a furnace with O 2 2. Coat

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information

Journal of Advanced Mechanical Design, Systems, and Manufacturing

Journal of Advanced Mechanical Design, Systems, and Manufacturing Fabrication of the X-Ray Mask using the Silicon Dry Etching * Hiroshi TSUJII**, Kazuma SHIMADA**, Makoto TANAKA**, Wataru YASHIRO***, Daiji NODA** and Tadashi HATTORI** **Laboratory of Advanced Science

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5961/60/dc1 Supporting Online Material for Polarization-Induced Hole Doping in Wide Band-Gap Uniaxial Semiconductor Heterostructures John Simon, Vladimir Protasenko,

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

About us. Capabilities

About us. Capabilities Catalog 215 Content About us... 2 Capabilities... 2 Anti-reflection coatings... 4 High reflection coatings... 5 Beamsplitter coatings... 6 Filter coatings... 7 Multiband precision filters... 8 DLC coatings...

More information

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis Supporting Information: Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis Cindy K. Harnett, Yehya M. Senousy, Katherine A. Dunphy-Guzman #, Jeremy Templeton * and Michael

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

16.2 Scanning Infrared Spectrometers

16.2 Scanning Infrared Spectrometers 16.2 Scanning Infrared Spectrometers it's difficult to find materials transparent in the infrared water vapor and atmospheric CO 2 can cause problems there are three common sources high diffraction orders

More information

Atomic Layer Deposition(ALD)

Atomic Layer Deposition(ALD) Atomic Layer Deposition(ALD) AlO x for diffusion barriers OLED displays http://en.wikipedia.org/wiki/atomic_layer_deposition#/media/file:ald_schematics.jpg Lam s market-leading ALTUS systems combine CVD

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 1400 ma-n 1400 is a negative tone photoresist series designed for the use in microelectronics and microsystems. The resists are

More information

Processing guidelines. Negative Tone Photoresists mr-ebl 6000

Processing guidelines. Negative Tone Photoresists mr-ebl 6000 Characteristics Processing guidelines Negative Tone Photoresists mr-ebl 6000 mr-ebl 6000 is a chemically amplified negative tone photoresist for the use in micro- and nanoelectronics. - Electron beam sensitive

More information

CMOS Technology. Flow varies with process types & company. Start with substrate selection. N-Well CMOS Twin-Well CMOS STI

CMOS Technology. Flow varies with process types & company. Start with substrate selection. N-Well CMOS Twin-Well CMOS STI CMOS Technology Flow varies with process types & company N-Well CMOS Twin-Well CMOS STI Start with substrate selection Type: n or p Doping level, resistivity Orientation, 100, or 101, etc Other parameters

More information

Technology process. It s very small world. Electronics and Microelectronics AE4B34EM. Why is the integration so beneficial?

Technology process. It s very small world. Electronics and Microelectronics AE4B34EM. Why is the integration so beneficial? It s very small world Electronics and Microelectronics AE4B34EM 9. lecture IC processing technology Wafer fabrication Lithography How to get 1 000 000 000 Components to 1 cm 2 Human hair on the surface

More information

L5: Micromachining processes 1/7 01/22/02

L5: Micromachining processes 1/7 01/22/02 97.577 L5: Micromachining processes 1/7 01/22/02 5: Micromachining technology Top-down approaches to building large (relative to an atom or even a transistor) structures. 5.1 Bulk Micromachining A bulk

More information

EE 143 CMOS Process Flow

EE 143 CMOS Process Flow EE 143 CMOS rocess Flow CT 84 D D G Sub G Sub S S G D S G D S + + + + - MOS Substrate Well - MOS Substrate EE 143 CMOS rocess Flow CT 85 hotoresist Si 3 4 SiO 2 Substrate selection: moderately high resistivity,

More information

Measurement of thickness of native silicon dioxide with a scanning electron microscope

Measurement of thickness of native silicon dioxide with a scanning electron microscope Measurement of thickness of native silicon dioxide with a scanning electron microscope V. P. Gavrilenko* a, Yu. A. Novikov b, A. V. Rakov b, P. A. Todua a a Center for Surface and Vacuum Research, 40 Novatorov

More information

EUV Transmission Lens Design and Manufacturing Method

EUV Transmission Lens Design and Manufacturing Method 1 EUV Transmission Lens Design and Manufacturing Method Kenneth C. Johnson kjinnovation@earthlink.net 7/16/2018 http://vixra.org/abs/1807.0188 Abstract This paper outlines a design for an EUV transmission

More information

Isolation Technology. Dr. Lynn Fuller

Isolation Technology. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Isolation Technology Dr. Lynn Fuller Motorola Professor 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

NIR High-Efficiency Subwavelength DiEractive Structures In Semiconductors.

NIR High-Efficiency Subwavelength DiEractive Structures In Semiconductors. c NIR High-Efficiency Subwavelength DiEractive Structures In Semiconductors. R.E. Smith, M.E. Warren, J.R. Wendt and G.A. Vawter Sandia National Laboratories Albuquerque, NM 87185-0603 Abstract: We have

More information

4. Thermal Oxidation. a) Equipment Atmospheric Furnace

4. Thermal Oxidation. a) Equipment Atmospheric Furnace 4. Thermal Oxidation a) Equipment Atmospheric Furnace Oxidation requires precise control of: temperature, T ambient gas, G time spent at any given T & G, t Vito Logiudice 34 4. Thermal Oxidation b) Mechanism

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 19: CMOS Fabrication Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Miller Effect Interconnect

More information

Lecture 5: Micromachining

Lecture 5: Micromachining MEMS: Fabrication Lecture 5: Micromachining Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class E-beam lithography X-ray

More information

Physical Vapor Deposition (PVD) Zheng Yang

Physical Vapor Deposition (PVD) Zheng Yang Physical Vapor Deposition (PVD) Zheng Yang ERF 3017, email: yangzhen@uic.edu Page 1 Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

Optical Coatings. Phone: Fax: Domostroitelnaya str St. Petersburg, Russia

Optical Coatings. Phone: Fax: Domostroitelnaya str St. Petersburg, Russia The Fresnel reflection at the boundary of media with different refractive indices and interference in thin films allow the optical components reflecting and transmitting properties to be selectively and

More information

Doping and Oxidation

Doping and Oxidation Technische Universität Graz Institute of Solid State Physics Doping and Oxidation Franssila: Chapters 13,14, 15 Peter Hadley Technische Universität Graz Institute of Solid State Physics Doping Add donors

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

Processing guidelines. Negative Tone Photoresist Series ma-n 2400

Processing guidelines. Negative Tone Photoresist Series ma-n 2400 Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each

More information

Examples of dry etching and plasma deposition at Glasgow University

Examples of dry etching and plasma deposition at Glasgow University Examples of dry etching and plasma deposition at Glasgow University Glasgow has pioneered and established many novel research activities involving the development of new dry etch processes and dry etch

More information

Semiconductor device fabrication

Semiconductor device fabrication REVIEW Semiconductor device fabrication is the process used to create the integrated circuits (silicon chips) that are present in everyday electrical and electronic devices. It is a multiplestep sequence

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Effect of γ irradiation on optical components

Effect of γ irradiation on optical components Effect of γ irradiation on optical components S. Baccaro, A. Piegari, I. Di Sarcina, A. Cecilia Abstract Optical components operating in radiation environments, like nuclear facilities, High Energy Physics

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition Nuclear Instruments and Methods in Physics Research B 206 (2003) 357 361 www.elsevier.com/locate/nimb Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted

More information

Microfabrication of Integrated Circuits

Microfabrication of Integrated Circuits Microfabrication of Integrated Circuits OUTLINE History Basic Processes Implant; Oxidation; Photolithography; Masks Layout and Process Flow Device Cross Section Evolution Lecture 38, 12/05/05 Reading This

More information

Complexity of IC Metallization. Early 21 st Century IC Technology

Complexity of IC Metallization. Early 21 st Century IC Technology EECS 42 Introduction to Digital Electronics Lecture # 25 Microfabrication Handout of This Lecture. Today: how are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Fabrication of sawtooth diffraction gratings using nanoimprint lithography

Fabrication of sawtooth diffraction gratings using nanoimprint lithography Fabrication of sawtooth diffraction gratings using nanoimprint lithography Chih-Hao Chang, a) R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, and M. L. Schattenburg Massachusetts Institute of Technology,

More information

COMMERCIAL PRODUCTS GROUP. World Leader in High Performance, Ultra-Durable Thin Film Coatings

COMMERCIAL PRODUCTS GROUP. World Leader in High Performance, Ultra-Durable Thin Film Coatings COMMERCIAL PRODUCTS GROUP Into the Future DSI was established in 1985 with a contract to develop an energy-efficient coating for halogen light bulbs. Since then, we have expanded our role in this specialized

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility.

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility. Fraunhofer Institute for Applied Optics and Precision Engineering Solutions with Light EXPERTISE in Optical system technology 2 Solutions with Light The Fraunhofer IOF conducts application oriented research

More information

Introduction to Nanoscience and Nanotechnology

Introduction to Nanoscience and Nanotechnology Introduction to Nanoscience and Nanotechnology ENS 463 2. Principles of Nano-Lithography by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Lithographic patterning

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Large-area, flexible 3D optical negative index metamaterial formed by nanotransfer printing DebashisChanda 1, KazukiShigeta 1, Sidhartha Gupta 1, Tyler Cain 1, Andrew Carlson 1, Agustin Mihi 1, Alfred

More information

Fabrication of Nanoscale Silicon Membranes on SOI Wafers Using Photolithography and Selective Etching Techniques:

Fabrication of Nanoscale Silicon Membranes on SOI Wafers Using Photolithography and Selective Etching Techniques: Fabrication of Nanoscale Silicon Membranes on SOI Wafers Using Photolithography and Selective Etching Techniques: Participant Names: Moriah Faint, Marcos Rodriguez Mentor: Frank Tsang Date: 1 Introduction

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition ESS4810 Lecture Fall 2010 Introduction Chemical vapor deposition (CVD) forms thin films on the surface of a substrate by thermal decomposition and/or reaction of gas compounds

More information

Precision Optical Engineering

Precision Optical Engineering Precision Optical Engineering Products: Prisms Windows Mirrors Flats and Master angles Sight Glasses Key Features: Prisms (Contacted, Cemented, AR coated, Mounted) Windows (Flat, wedged, curved, drilled,

More information

Advanced Polymers And Resists For Nanoimprint Lithography

Advanced Polymers And Resists For Nanoimprint Lithography Q U A L I T Y A S S U R A N C E MICROSYSTEMS & NANOSYSTEMS SPECIAL REPORT Advanced Polymers And Resists For Nanoimprint Lithography Numerous polymer systems specifically designed for nanoimprint lithography

More information

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Heerad Farkhoor, Adam Schwartzberg, Jeffrey Urban August 12, 2009 Abstract Obtaining structural information of nano-structured

More information

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet Introduction Guillermo Acosta, Dr. David Allred, Dr, Steven Turley Brigham Young University

More information

3. Overview of Microfabrication Techniques

3. Overview of Microfabrication Techniques 3. Overview of Microfabrication Techniques The Si revolution First Transistor Bell Labs (1947) Si integrated circuits Texas Instruments (~1960) Modern ICs More? Check out: http://www.pbs.org/transistor/background1/events/miraclemo.html

More information

Semiconductor Manufacturing Process 10/11/2005

Semiconductor Manufacturing Process 10/11/2005 Semiconductor Manufacturing Process 10/11/2005 Photolithography Oxidation CVD PVD Photolithography The purpose of photolithography is to imprint the desired pattern of a micro component on a substrate,

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

EUV Transmission Lens Design and Manufacturing Method

EUV Transmission Lens Design and Manufacturing Method 1 EUV Transmission Lens Design and Manufacturing Method Kenneth C. Johnson kjinnovation@earthlink.net 7/9/2018 Abstract This paper outlines a design for an EUV transmission lens comprising blazed, phase-

More information

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Fig. 1. Single-material Heatuator with selective doping on one arm (G.K. Ananthasuresh)

More information

Dow Corning WL-5150 Photodefinable Spin-On Silicone

Dow Corning WL-5150 Photodefinable Spin-On Silicone Dow Corning WL-515 Photodefinable Spin-On Silicone Properties and Processing Procedures Introduction Dow Corning WL-515 is a silicone formulation which can be photopatterned and cured using standard microelectronics

More information

Micro-Nano Fabrication Research

Micro-Nano Fabrication Research Micro-Nano Fabrication Research Technical Education Quality Improvement Programme 22-23 December 2014 Dr. Rakesh G. Mote Assistant Professor Department of Mechanical Engineering IIT Bombay rakesh.mote@iitb.ac.in;

More information

Basic&Laboratory& Materials&Science&and&Engineering& Micro&Electromechanical&Systems&& (MEMS)&

Basic&Laboratory& Materials&Science&and&Engineering& Micro&Electromechanical&Systems&& (MEMS)& Basic&Laboratory& Materials&Science&and&Engineering& Micro&Electromechanical&Systems&& (MEMS)& M105& As of: 27.10.2011 1 Introduction... 2 2 Materials used in MEMS fabrication... 2 3 MEMS fabrication processes...

More information

Materials Characterization

Materials Characterization Materials Characterization C. R. Abernathy, B. Gila, K. Jones Cathodoluminescence (CL) system FEI Nova NanoSEM (FEG source) with: EDAX Apollo silicon drift detector (TE cooled) Gatan MonoCL3+ FEI SEM arrived

More information

CHAPTER 5 GROWTH OF POTASSIUM TETRA BORATE (K 2 B 4 O 11 H 8 ) SINGLE CRYSTALS BY LOW TEMPERATURE SOLUTION GROWTH METHOD AND ITS CHARACTERISATION

CHAPTER 5 GROWTH OF POTASSIUM TETRA BORATE (K 2 B 4 O 11 H 8 ) SINGLE CRYSTALS BY LOW TEMPERATURE SOLUTION GROWTH METHOD AND ITS CHARACTERISATION 99 CHAPTER 5 GROWTH OF POTASSIUM TETRA BORATE (K 2 B 4 O 11 H 8 ) SINGLE CRYSTALS BY LOW TEMPERATURE SOLUTION GROWTH METHOD AND ITS CHARACTERISATION 5.1 INTRODUCTION The choice of selecting a particular

More information