Innovative sensors and systems for the molecular Point-of-Care diagnostics

Size: px
Start display at page:

Download "Innovative sensors and systems for the molecular Point-of-Care diagnostics"

Transcription

1 Innovative sensors and systems for the molecular Point-of-Care diagnostics AIT Austrian Institute of Technology GmbH Health & Environment Department Molecular Diagnostics Contact

2 AIT Austrian Institute of Technology GmbH AIT headquarter Schönbrunn palace Largest research center in Austria (~1150 employees) Half public, half private Five departments: Energy Mobility Safety & Security Health & Environment Innovation Systems 2

3 Organizational chart of AIT

4 Business Unit Molecular Diagnostics Biomarker Development Assay Development Diagnostic Biosensors Molecular Diagnostics Systems Integration Point-of-Care Bioinformatics 4

5 Automated immunoassays for monitoring at intensive care units Project leader Dr. Johannes Peham PhD topic of Helene Zirath 5

6 Automated immunoassays: microfluidic design Disposable thermoplastic chip Reaction chamber: 20 µl, air-free filling, storing of magnetic beads Chip-integrated micro-syringes: Actuation of detection antibody and sample, onchip storage of detection antibody Outlet Inlets and outlet for reagents Mixing channel for substrate Reaction chamber (20 µl) with magnetic beads 6

7 Automated immunoassays: analysis process 1. Chip prefilled with magnetic beads, detection antibody and plasma 2. Sample incubation 3 min + wash 3. Detection antibody-biotin 3 min + wash 4. SA poly-hrp 3 min + wash 5. Chemiluminescent substrate (mixed on-chip) & read signal Zirath H, Proc MicroTAS, 2014 Zirath H, Proc Eng,

8 Luminescence Units Automated immunoassays: measurement range On-chip IL-8 ELISA IL-8 biomarker in 10 % plasma (pg/ml) On-chip IL-8 ELISA Signal blank Limit of detection LOD on-chip: 10 pg/ml IL-8 detected at concentrations between 10 pg/ml and 2000 pg/ml within only 30 minutes These concentrations correspond to the clinical need by requiring only 3μL blood plasma for the measurement Zirath H, Proc MicroTAS, 2014 Zirath H, Proc Eng,

9 Summary Automated immunoassays for monitoring at intensive care units Rapid <30 minutes Compact demonstrator: 20x20cm testchip: 2x2cm Outlook: Validate with patient samples Develop multiplex system Sensitive <= 50µL whole blood LOD ~ 10pg/mL Cost-effective reagents/marker 1.1 cartridge ~<1 device < 1000 planned Patent pending EP Project leader Dr. Johannes Peham johannes.peham@ait.ac.at PhD topic of Helene Zirath 9

10 Nanoparticle-based homogeneous biosensing Project leader Dr. Jörg Schotter 10

11 Nanoparticle-based homogeneous biosensing Mix & measure detection principle sample + functionalized nanoparticles cuvette 11

12 Nanoparticle-based homogeneous biosensing Mix & measure detection principle Analyte molecule specifically binds to functionalized nanoparticle 12

13 Nanoparticle-based homogeneous biosensing Mix & measure detection principle Analyte molecule specifically binds to functionalized nanoparticle On analyte binding, a measureable physical property of the nanoparticle changes 13

14 Nanoparticle-based homogeneous biosensing Optical detection of nanoparticle phase lag in external rotating magnetic field hybrid magnetic-core / Au-shell nanorods absorption allows optical detection of nanoparticle orientation which depends on surface coverage by selectively bound target molecules Illustration by Darragh Crotty, S. Schrittwieser et al., ACS Nano 6 (2012) 791

15 Nanoparticle-based homogeneous biosensing Measurement setup & typical raw signals PC sample audio amplifier Lock-in amplifier photodetector small coil shunt signal (V) voltage (V) photodetector signal (V) 2.34 small coil shunt voltage (V) 2 laser diode photodetector coil pairs Laboratory setup φ time (ms) 2f-optical signal due to symmetry of nanorods Phase lag is measured by lock-in amplifier and re-calculated to 1f -1 15

16 Summary Nanoparticle-based homogeneous biosensing Simple mix & measure technique Minimal sample preparation Method applicable sensing in serum and saliva Fast Reduced incubation time due to 3d diffusion Continuous monitoring of binding events (Real-time measurements) Cost-effective Easy to integrate & simple instrumentation Small sample volumes Ideally suited for point-of-care applications Patent status Austrian AT European EP Chinese CN US application US Other applications Results can be modeled and understood by theory Size analysis of bound proteins Measurement of kynetic parameters possible S. Schrittwieser et al., Small 10 (2014) 407 Project leader Dr. Jörg Schotter 16

17 Integrated optical waveguide biosensing Project leader Dr. Rainer Hainberger 17

18 The photonic sensing principle: MZI waveguide side view Bio-sensitive layer on top of waveguide provides selective binding and enrichment of biomolecules on sensor surface Light intensity analyte sensing layer n sl core layer n wg binding events change phase velocity of light in sensing arm Intensity Concentration substrate n s waveguide front view w~600nm Si 3 N 4 H~250nm SiO 2 18

19 The photonic sensing principle: MZI 19

20 light power (µw) The photonic sensing principle: MZI 2,0 1,5 1,0 interference 0,5 0,0 1,00 1,25 1,50 1,75 2,00 2,25 time (min) ~1cm bound target molecules biofunctional layer with capture molecules 20

21 Measurement setup 21

22 Miniaturization: optoelectronic integration =850nm input grating optical sensor element output grating silicon dioxid µm Si-photodiodes optoelectronic layer Si 3 N 4 waveguides fabricated by CMOS compatible process TSV silicon substrate 22

23 Miniaturization: optoelectronic integration SOI PECVD-Si 3 N 4 Silicon as waveguide material Silicon nitride (Si 3 N 4 ) as waveguide material Wavelength of 1310nm Wavelength of 850nm Requires special SiGe photodiodes Co-integration with optoelectronics requires wafer-bonding process Integration of standard Si photodiodes possible Direct PECVD deposition on Si-optoelectronics possible 23

24 optical power (dbm) Experimental results: low-loss 1cm 0.86dB/cm (<18% of optical power lost over 1 cm) =850nm;TM 24

25 normalized power (1) Experimental results: sensitivity & biosensing Si 3 N 4 wire waveguides thickness 250nm 1cm 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 with NaCl-solution n=~9e time (sec) S-Protein/S-Peptide measurement

26 Compact PECVD-Si3N4 MZI spirals (L=3cm) 470µm

27 Technology for OCT applications Austrian national project aiming to realize a prototype with following characteristics: Scalable Suitable for mass production Using a light source with a wavelength of 850nm Integrated detector on chip Integrated analog optoelectronics High efficient coupling and waveguiding

28 Summary Integrated optical waveguide biosensing Mach-Zehnder Interferometer biosensing Suitable for proteins, peptides, DNA, antibodies CMOS compatible low-loss Si 3 N 4 waveguide platform Suitable for point-of-care applications Other possible applications: OCT, Telecommunications Reduction of sensing area by integrating spiral-shaped waveguides Multiplex sensing Project leader Dr. Rainer Hainberger rainer.hainberger@ait.ac.at 28

29 Micro- & nanotechnology equipment Microfluidic milling machine LPKF Protomat Wire bonder F+K Delvotec, manual operation Evaporation chamber Leybold Univex 450, 2 thermal sources, 1 e-gun source Argon ion beam etching Roth+Rau, IonSys 500, 4 ion source Hiden mass spectrometer for end point detection Plasma asher Diener Electronics, Femto Optical lithography EVG 620 mask aligner, 4 SEM & e-beam lithography Zeiss Supra 40, Raith e-beam writing tool Cleanroom 42m², resist processing and wet chemical etching Atomic Force Microscope Molecular Imaging, Pico Plus Profilometer Tencor, Alpha Step Magnetron sputtering Leybold, Univex 450 C cluster system, 11 Targets, 4, DC/RF sputtering Materials inkjet printer FujiFilm Dimatix DMP-2831

30 Electrical, magnetic & optical characterization Analytical Probe System SUSS PM5, electrical DC-HF measurements on 6 wafers or single substrates, compatible with two-axis (in-plane) magnetic field application for magnetoresistance characterization Precision Semiconductor Parameter Analyzer Agilent 4156C, for frequency-dependent LRC-measurements Probe station for magnetoresistance characterization in arbitrary magnetic field direction (up to 40 mt) Setup for linear AC and rotating magnetic fields up to 2 khz frequency and 5 mt amplitude including optical detection Setup for optical waveguide characterization various laser sources (850nm, tunable lasers nm, nm), polarization control, automated alignment & automated liquid handling Monochromomator VIS, NIR, IR SUSS PM5 Analytical Probe System

31 Photonic design & characterization Photonic simulation cluster: 256 cores with 488GB RAM 3D FDTD simulation of photonic wire Bragg reflector 1TB high performance SSD array and 5TB raid-5 HDD storage with automated backup 2D/3D finite difference time domain simulation packages variational mode matching tools for eigenmode calculation Floquet-Bloch solver for simulating waveguide grating couplers Fully equipped set-up for waveguide device characterization and biosensing experiments Temperature controlled sample holder and programmable fluid control system with five fluid reservoirs 31

32 Thank you for your attention!!! Contact AIT Austrian Institute of Technology Health & Environment Department Molecular Diagnostics

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Introduction Xu Sun Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH),

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

PYTHIA: Monolithically integrated interferometric biochips for label-free early detection of Human diseases

PYTHIA: Monolithically integrated interferometric biochips for label-free early detection of Human diseases PYTHIA: Monolithically integrated interferometric biochips for label-free early detection of Human diseases Ioannis Raptis, IMEL NCSR Demokritos raptis@imel.demokritos.gr www.pythia-project.eu The Problem

More information

Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules

Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules Photonic Crystal Microarray Nanoplatform for High-Throughput Detection of Biomolecules Swapnajit Chakravarty 1, Wei-Cheng Lai 2, Kathryn Moncivais 3, Xiaolong (Alan) Wang 1, Che-Yun Lin 2, Zhiwen J. Zhang

More information

P. Bienstman, E. Hallynck, C. Lerma Acre, S. Werquin, J.- W. Hoste, D. Martens PHOTONICS RESEARCH GROUP 1

P. Bienstman, E. Hallynck, C. Lerma Acre, S. Werquin, J.- W. Hoste, D. Martens PHOTONICS RESEARCH GROUP 1 PHOTONICS RESEARCH GROUP P. Bienstman, E. Hallynck, C. Lerma Acre, S. Werquin, J.- W. Hoste, D. Martens PHOTONICS RESEARCH GROUP 1 Overview Silicon nanophotonics biosensors Applications: Conformational

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Case Studies of Micro-Biosensors

Case Studies of Micro-Biosensors Case Studies of Micro-Biosensors Lecture April 18 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) Advantages of Micro Biosensors Bench process

More information

PROJECT PERIODIC REPORT

PROJECT PERIODIC REPORT PROJECT PERIODIC REPORT Grant Agreement number: 619456 Project acronym: SITOGA Project title: Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with

More information

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014 Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing Fil Bartoli Lehigh University 4/9/2014 P.C. Rossin College of Engineering and Applied Science Department of Electrical

More information

H I B I S C U S. Executive Summary

H I B I S C U S. Executive Summary Executive Summary H I B I S C U S HIBISCUS (Hybrid Integrated BIophotonic Sensors Created by Ultrafast laser Systems) is an FP6 STREP project within the IST Priority. It is coordinated by Prof. Giulio

More information

GE Sensing & Inspection Technologies MEMS. Global Solutions for Microsystems

GE Sensing & Inspection Technologies MEMS. Global Solutions for Microsystems GE Sensing & Inspection Technologies MEMS Global Solutions for Microsystems g Global research, development and manufacturing excellence Groby, United Kingdom MEMS Design and Manufacturing Center Advanced

More information

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS - Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS Chemnitz System Packaging Page 1 System Packaging Outline: Wafer level packaging for MEMS

More information

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array PIERS ONLINE, VOL. 4, NO. 7, 2008 746 High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array Bing-Hung Chen, Yih-Chau Wang, and Jia-Hung Lin Institute of Electronic Engineering,

More information

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

Silicon photonics biosensing: different packaging platforms and applications ABSTRACT 1. REACTION TUBES AS A PLATFORM FOR RING RESONATOR SENSORS.

Silicon photonics biosensing: different packaging platforms and applications ABSTRACT 1. REACTION TUBES AS A PLATFORM FOR RING RESONATOR SENSORS. Silicon photonics biosensing: different packaging platforms and applications C. Lerma Arce a,b, E. Hallynck a,b, S. Werquin a,b, J.W. Hoste a,b, D. Martens a,b, P. Bienstman a,b,* a Photonics Research

More information

Tackling the optical interconnection challenge for the Integrated Photonics Revolution

Tackling the optical interconnection challenge for the Integrated Photonics Revolution Tackling the optical interconnection challenge for the Integrated Photonics Revolution Dr. Ir. TU Delft, Precision and Microsystems Engineering m.tichem@tudelft.nl Microfabrication and MEMS Si microfabrication

More information

2.3 Quantum Dots (QDs)

2.3 Quantum Dots (QDs) 2.3 Quantum Dots (QDs) QDs are inorganic nanocrystals, approximately 1 10 nm in size, with unique optical properties of broad excitation, narrow size-tunable emission spectra, high photochemical stability,

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

Micro/nanophotonics at VTT

Micro/nanophotonics at VTT Micro/nanophotonics at VTT Timo Aalto (timo.aalto@vtt.fi) VTT Technical Research Centre of Finland Micro and nanotechnology seminar, St Petersburg, 16 th Nov 2010 2 Outline Overview of micro and nanophotonics

More information

Chapter 2 Capacitive Sensing Electrodes

Chapter 2 Capacitive Sensing Electrodes Chapter 2 Capacitive Sensing Electrodes The capacitive sensing electrodes on the top of a CMOS chip serve as an interface between the microelectronic readout system and the biological/chemical analyte.

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Interferometric optical biosensor. Xingwei Wang

Interferometric optical biosensor. Xingwei Wang Interferometric optical biosensor Xingwei Wang 1 Light Transverse electromagnetic wave Reflection Refraction Diffraction Interference 2 Fabry-Perot interferometer 3 Interferometer Two waves that coincide

More information

Integrated Photonic Devices for Sensing

Integrated Photonic Devices for Sensing Integrated Photonic Devices for Sensing Benjamin L. Miller Departments of Dermatology, Biochemistry and Biophysics, and Biomedical Engineering University of Rochester Rochester, NY 14642 USA Benjamin_miller@urmc.rochester.edu

More information

Intlvac Nanochrome I Sputter System (intlvac_sputter)

Intlvac Nanochrome I Sputter System (intlvac_sputter) 1. Intlvac_Sputter Specifications The Intlvac Nanochrome I sputter system is configured for DC, AC (40 khz), and RF (13.56 MHz) magnetron sputtering. They system has in-situ quartz lamp heating up to 200C,

More information

Nanotechnology Commercialization Success Story Professor Ray T. Chen The University of Texas, Austin

Nanotechnology Commercialization Success Story Professor Ray T. Chen The University of Texas, Austin Nanotechnology Commercialization Success Story Professor Ray T. Chen The University of Texas, Austin chen@ece.utexas.edu Description of the nanotechnology-enabled product or service Through the AFOSR MURI

More information

Sensor. Device that converts a non-electrical physical or chemical quantity into an electrical signal. Sensor Processor Display Output signal

Sensor. Device that converts a non-electrical physical or chemical quantity into an electrical signal. Sensor Processor Display Output signal Microsensors Outline Sensor & microsensor Force and pressure microsensors Position and speed microsensors Acceleration microsensors Chemical microsensors Biosensors Temperature sensors Sensor Device that

More information

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each

More information

An expedition to modern optical bio-diagnostic tools

An expedition to modern optical bio-diagnostic tools An expedition to modern optical bio-diagnostic tools Advisor Prof. James F. Rusling Dhanuka Wasalathanthri CHEM 5395 How sensitive it is? Prostate Specific Antigen (PSA) in serum (normal) - 0.5 to 2 ng

More information

MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY

MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY 1 CTCelect: Isolation of single CTCs 2 Diagnostic fluidic chip 3 Fluidic chip for cell isolation 4 Helium detector 5 MEMS micro densitometer 1 APPLICATION

More information

CENTRIFUGAL MICROFLUIDICS

CENTRIFUGAL MICROFLUIDICS CENTRIFUGAL MICROFLUIDICS Yoon-Kyoung Cho School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea ABSTRACT Lab-on-a-disc, in which

More information

Silicon nanophotonic biosensors

Silicon nanophotonic biosensors PHOTONICS RESEARCH GROUP Silicon nanophotonic biosensors Peter Bienstman Peter.Bienstman@UGent.be PHOTONICS RESEARCH GROUP 1 THE VISION PHOTONICS RESEARCH GROUP 2 Deaths by infectious diseases www.worldmapper.com

More information

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures Supplementary Material (ESI) for Lab on a Chip This journal is The Royal Society of Chemistry 2008 A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

NANO-FABRICATION FOR MESOSCOPIC PHYSICS

NANO-FABRICATION FOR MESOSCOPIC PHYSICS NANO-FABRICATION FOR MESOSCOPIC PHYSICS Frédéric Pierre CNRS, Laboratory of Photonics and Nanostructures (LPN), Marcoussis, France ϕ Nano Team LPN PLAN Overview Electron beam lithography Step by step realization

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

OLED/OPD transducer for point-of-use diagnostics

OLED/OPD transducer for point-of-use diagnostics OLED/OPD transducer for point-of-use diagnostics Overview 1. CDT overview + Biosensor platform overview CDT overview Absorbance based lateral flow device (LFD) basics and advantages Abingdon Health collaboration

More information

Surface Plasmon Resonance Analyzer

Surface Plasmon Resonance Analyzer Surface Plasmon Resonance Analyzer 5 6 SPR System Based on Microfluidics Wide Dynamic Range Kinetic Analysis by Detection of Association /Dissociation of Bio-Molecules Measuring of Mass Change below

More information

Bio MEMS Class -1 st week

Bio MEMS Class -1 st week Bio MEMS Class -1 st week Jang, Jaesung Ref: Bashir ADDR Review paper, 2004. 1 Introduction Bio-MEMS: devices or systems, constructed using techniques inspired from micro/nano-scale fabrication, that are

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay

Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay Using ULS24 CMOS Bio-imager as a Readout Sensor for Chemiluminescence Immunoassay and DNA Hybridization Assay Updated: Nov 11, 2016 Introduction Immunoassay is a widely used method for detecting the presence

More information

EV Group 300mm Wafer Bonding Technology July 16, 2008

EV Group 300mm Wafer Bonding Technology July 16, 2008 EV Group 300mm Wafer Bonding Technology July 16, 2008 EV Group in a Nutshell st Our philosophy Our mission in serving next generation application in semiconductor technology Equipment supplier for the

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Electron Beam Column electron gun beam on/of control magnetic deflection

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign Outline Definition of surface micromachining Most common surface micromachining materials - polysilicon

More information

MOLECULAR DIAGNOSTICS. AIT Austrian Institute of Technology GmbH Center for Health & Bioresources

MOLECULAR DIAGNOSTICS. AIT Austrian Institute of Technology GmbH Center for Health & Bioresources MOLECULAR DIAGNOSTICS AIT Austrian Institute of Technology GmbH Center for Health & Bioresources AIT AUSTRIAN INSTITUTE OF TECHNOLOGY OWNERSHIP STRUCTURE 49,54% FEDERATION OF AUSTRIAN INDUSTRIES 50,46%

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

Femtosecond micromachining in polymers

Femtosecond micromachining in polymers Femtosecond micromachining in polymers Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur fs-micromachining focus laser beam inside

More information

MagCore Automated Nucleic Acid Extractor Overview

MagCore Automated Nucleic Acid Extractor Overview MagCore Automated Nucleic Acid Extractor Overview Cost -Effective Cost-Effective MagCore HF16 New Generation MagCore HF16 Plus New! Spectrophotometer Built-in MagCore Super New! Economical and Space Saving

More information

On-chip MEMS for automated chip-to-chip assembly

On-chip MEMS for automated chip-to-chip assembly On-chip MEMS for automated chip-to-chip assembly Dr. Ir. Marcel Tichem, Ir. Tjitte-Jelte Peters, Kai Wu MSc TU Delft, Precision and Microsystems Engineering Photonics Event, Koningshof, Veldhoven, 2 June

More information

S C I E N T I F I C E N G I N E E R

S C I E N T I F I C E N G I N E E R SCIENTIF IC ENGINEER SUMMARY: Research Scientist with a PHD in Engineering Physics with numerous Publications, and Patents. Extensive R&D experience. Expertise includes working with nano and measurement

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

DPN 5000 System. Figure 1: The DPN 5000 System. Page 1 of 5. Created on 9/9/2011 Revision

DPN 5000 System. Figure 1: The DPN 5000 System. Page 1 of 5. Created on 9/9/2011 Revision Introduction NanoInk s is a dedicated, versatile instrument capable of nanopatterning a variety of materials with nanoscale accuracy and precision. With NanoInk s proprietary MEMs devices and deposition

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphoton..7 Supplementary Information On-chip optical isolation in monolithically integrated nonreciprocal optical resonators Lei Bi *, Juejun Hu, Peng Jiang, Dong Hun

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Integrated photonic devices for sensing and optical communication in the near- and mid- IR

Integrated photonic devices for sensing and optical communication in the near- and mid- IR Integrated photonic devices for sensing and optical communication in the near- and mid- IR Dr. Senthil M Ganapathy (smg@orc.soton.ac.uk) Prof. James S Wilkinson (jsw@orc.soton.ac.uk) Motivation: Integrated

More information

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS Reagentless Grating Coupler Sensor Angle, θ, is related to the analyte refractive

More information

Examples of dry etching and plasma deposition at Glasgow University

Examples of dry etching and plasma deposition at Glasgow University Examples of dry etching and plasma deposition at Glasgow University Glasgow has pioneered and established many novel research activities involving the development of new dry etch processes and dry etch

More information

Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale.

Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale. Lab-on-a-Chip (LOC) Miniaturization on micro- and nanoscale http://nanob2a.cin2.es/publication/articles/integrated-optical-devices-for-lab-on-a-chip-biosensing-applications, downloaded 14.04.16 www.kit.edu

More information

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook CMOS Fabrication Dr. Bassam Jamil Adopted from slides of the textbook CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different

More information

TEPZZ 5 Z 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/46

TEPZZ 5 Z 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/46 (19) (12) EUROPEAN PATENT APPLICATION TEPZZ 5 Z 6A_T (11) EP 2 523 026 A1 (43) Date of publication: 14.11.2012 Bulletin 2012/46 (21) Application number: 12167332.1 (51) Int Cl.: G02B 6/12 (2006.01) G02B

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Mouth Guards, Sweatbands, and Bandages: On-body Chemical Sensors. Christopher Salthouse, Dev and Linda Gupta Professor of Electrical Engineering

Mouth Guards, Sweatbands, and Bandages: On-body Chemical Sensors. Christopher Salthouse, Dev and Linda Gupta Professor of Electrical Engineering Mouth Guards, Sweatbands, and Bandages: On-body Chemical Sensors Christopher Salthouse, Dev and Linda Gupta Professor of Electrical Engineering Know Your Health Continuous Chemical Monitoring Bandage Sweatband

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

200mm Next Generation MEMS Technology update. Florent Ducrot

200mm Next Generation MEMS Technology update. Florent Ducrot 200mm Next Generation MEMS Technology update Florent Ducrot The Most Exciting Industries on Earth Semiconductor Display Solar 20,000,000x reduction in COST PER TRANSISTOR in 30 years 1 20x reduction in

More information

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK Tel:

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK   Tel: Power Vision Ltd PV Research Power Vision Ltd Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK www.pvoptical.com Tel: +44 1270 253000 Flexible Whether it be fast AR coating onto temperature sensitive

More information

AIT - Austrian Institute of Technology

AIT - Austrian Institute of Technology BIOMARKER DISCOVERY, BIOINFORMATICS, AND BIOSENSOR DEVELOPMENT Technology Experience AIT Austrian Institute of Technology Low-Emission Transport AIT - Austrian Institute of Technology Energy Health & Bioresources

More information

Center for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria; 2

Center for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria; 2 Proceedings Electromagnetic Characterization and Simulation of a Carbonate Buffer System on a Microwave Biosensor Lisa-Marie Wagner 1, *, Florian Strasser 2, Eva Melnik 2 and Martin Brandl 1 1 Center for

More information

Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures.

Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures. Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures Heungjoo Shin School of Mechanical and Nuclear Engineering Contents 1 Introduction

More information

Near- and mid- infrared group IV photonics

Near- and mid- infrared group IV photonics Near- and mid- infrared group IV photonics C. G. Littlejohns 1,2, M. Saïd Rouifed 1, H. Qiu 1, T. Guo Xin 1, T. Hu 1, T. Dominguez Bucio 2, M. Nedeljkovic 2, G. Z. Mashanovich 2, G. T. Reed 2, F. Y. Gardes

More information

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer Thomas M. Adams Richard A. Layton Introductory MEMS Fabrication and Applications Springer Contents Preface xiü Part I Fabrication Chapter 1: Introduction 3 1.1 What are MEMS? 3 1.2 Why MEMS? 4 1.2.1. Low

More information

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Fig. 1. Single-material Heatuator with selective doping on one arm (G.K. Ananthasuresh)

More information

Wide Dynamic Range Sensing in Photonic Crystal Microcavity. Biosensors

Wide Dynamic Range Sensing in Photonic Crystal Microcavity. Biosensors Wide Dynamic Range Sensing in Photonic Crystal Microcavity Biosensors Chun-Ju Yang 1 *, Hai Yan 1,Yi Zou 1, Swapnajit Chakravarty 2 *, Naimei Tang 2, Zheng Wang 1, Ray T. Chen 1, 2 * 1 Dept. Electrical

More information

Diffusion Doped Plasma Dispersion Silicon Modulators

Diffusion Doped Plasma Dispersion Silicon Modulators Diffusion Doped Plasma Dispersion Silicon Modulators Vadivukkarasi Jeyaselvan a and Shankar Kumar Selvaraja a a Centre for Nano Science and engineering, Indian Institute of Science, Bengaluru, India ABSTRACT

More information

Monolithic Microphotonic Optical Isolator

Monolithic Microphotonic Optical Isolator Monolithic Microphotonic Optical Isolator Lei Bi, Juejun Hu, Dong Hun Kim, Peng Jiang, Gerald F Dionne, Caroline A Ross, L.C. Kimerling Dept. of Materials Science and Engineering Massachusetts Institute

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

INTEGRATED OPTICAL ISOLATOR

INTEGRATED OPTICAL ISOLATOR INTEGRATED OPTICAL ISOLATOR Presented by Gokhan Ozgur Advisor: Dr. Gary Evans July 02, 2004 Electrical Engineering - SMU INTRODUCTION They are used to eliminate light that is back-reflected, from splices

More information

Enzyme based biosensors

Enzyme based biosensors Enzyme based biosensors Brief history; how it all started? 1916 First report on immobilization of proteins : adsorption of invertase on activated charcoal 1922 First glass ph electrode 1956 Clark published

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Optical Fiber Sensors for Biomedical Applications

Optical Fiber Sensors for Biomedical Applications Optical Fiber Sensors for Biomedical Applications Xingwei (Vivian) Wang, Ph.D. Assistant Professor Department of Electrical and Computer Engineering University of Massachusetts Lowell Phone: (978) 934-1981

More information

Characteristics of Heat-Annealed Silicon Homojunction Infrared Photodetector Fabricated by Plasma-Assisted Technique

Characteristics of Heat-Annealed Silicon Homojunction Infrared Photodetector Fabricated by Plasma-Assisted Technique PHOTONIC SENSORS / Vol. 6, No. 4, 216: 345 35 Characteristics of Heat-Annealed Silicon Homojunction Infrared Photodetector Fabricated by Plasma-Assisted Technique Oday A. HAMMADI * Department of Physics,

More information

PRICE LIST 3IT.NANO 2017

PRICE LIST 3IT.NANO 2017 This price list is valid from July 1st to December 31,. Rates may be subject to change. LNN AREA - CLEANROOM class 100 Access fee and operator hourly rate LNN access fee Operator hourly rate Equipment

More information

Welcome MNT Conference 1 Albuquerque, NM - May 2010

Welcome MNT Conference 1 Albuquerque, NM - May 2010 Welcome MNT Conference 1 Albuquerque, NM - May 2010 Introduction to Design Outline What is MEMs Design General Considerations Application Packaging Process Flow What s available Sandia SUMMiT Overview

More information

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Contents 9.1 Introduction 9.2 Experiment 9.3 Results and Discussions 9.4 Conclusion 9.1 Introduction Magnetostrictive

More information

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing Agilent Technologies AFM e-seminar: Understanding and Choosing the Correct Cantilever for Your Application Oliver Krause NanoWorld Services GmbH All mentioned company names and trademarks are property

More information

Procedure to deposit Gold only on the sidewalls of rectangular nanostructures and its applications

Procedure to deposit Gold only on the sidewalls of rectangular nanostructures and its applications Procedure to deposit Gold only on the sidewalls of rectangular nanostructures and its applications Zain Zaidi, Saara Khan, James Conway, J Provine, Michelle Rincon, Roger Howe Stanford University, USA

More information

SUPPLEMENTARY MATERIALS. An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping

SUPPLEMENTARY MATERIALS. An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping SUPPLEMENTARY MATERIALS An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping Nien-Tsu Huang a #, Weiqiang Chen a,b #, Bo-Ram Oh a, Timothy T. Cornell c, Thomas

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

EMBG Resonators Based on Carbon Nanotubes for DNA Detection

EMBG Resonators Based on Carbon Nanotubes for DNA Detection ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 3, 2011, 212 221 EMBG Resonators Based on Carbon Nanotubes for DNA Detection Alina CISMARU 1, Marius VOICU 1, Antonio RADOI 1, Adrian

More information

Directed Assembly of Nanoparticles for Biosensing Applications

Directed Assembly of Nanoparticles for Biosensing Applications NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) www.nano.neu.edu Directed Assembly of Nanoparticles for Biosensing Applications Ahmed Busnaina, Director, NSF Nanoscale

More information

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS Simple and cost-effective introduction of PERC technology into the mass production of solar cells Kerstin Strauch, Florian Schwarz, Sebastian Gatz 1 Introduction

More information