PRICE LIST 3IT.NANO 2017

Size: px
Start display at page:

Download "PRICE LIST 3IT.NANO 2017"

Transcription

1 This price list is valid from July 1st to December 31,. Rates may be subject to change. LNN AREA - CLEANROOM class 100 Access fee and operator hourly rate LNN access fee Operator hourly rate Equipment hourly rates 3 Substrates bonding (AML Wafer Bonder) Wet benches plating benches Thin film deposition by atomization (Spraycoater) Electrical measurements - Probe station Atomic force microscope (AFM) 4 Ozone surface cleaning (UV-Novascan) Profilometer (Dektak and Fogale) Chemical mechanical planarization (CMP) Thin films deposition by argon plasma (Emitech sputter coater) Plasma etching (DRIE) Samples cleaning by oxygen plasma (Plasmaline) Oxidation, annealing and LPCVD deposition (Tylan furnace) Photolithography (Mask aligner OAI, Spin coater, Development benches) Samples heat treatment (RTA) Scanning electron microscopy (LEO1540XB CrossBeam FIB - SEM mode only) Scanning electron microscopy (SEM FEG Zeiss Supra 55VP) 5 Laser beam photolithograpy (Photoplotter) 6 Deposition of thin dielectric layers (ALD) Plasma Enhanced Chemical Vapor Deposition (PECVD STS) Ion implanter (Varian) Advanced Oxide Etching (AOE) III-V compounds Etching (ICP III-V) Silicon Etching (ASE) Thin films deposition (Vaccum coater Edwards)* Thin films deposition (Sputter deposition SPT320)* QSR5 electro-resin deposition by evaporation (TLI evaporator)* 39 $ / day 39 $ / h 90 $ / h 210 $ / h 144 $ / deposition

2 This price list is valid from July 1st to December 31,. Rates may be subject to change. LNN AREA - CLEANROOM class 100 Training prices LNN general training Ellipsometer - basic training Ellipsometer - advanced training Laminator Optical microscopes Nikon et DMLM Ozone surface cleaning (UV-Novascan) Plasmaline Samples preparation and cleavage Emitech sputter coater Spin coater AFM Electroplating benches Wet benches part I Wet benches part II Wet benches part III Rapid thermal annealing - RTA Plasma etching - RIE Photolithography part II Photolithography part III Dektat profilometer Fogale optical profilometer Probe station Thin film deposition - SPT320 Thin film deposition - Spraycoater Ion beam etching FIB Electronic microscopy part I (Leo Leo VP - FIB) Photolithography part I Photoplotter part I Photoplotter part II Chemical mechanical planarization - CMP Wafer Bonder AML Atomic layer deposition ALD Electronic microscopy part II (Caracterization - Cathodoluminescence and EDX) PECVD STS AOE STS ASE STS ICP III-V 75 $ / user 75 $ / user 150 $ / user 300 $ / user 600 $ / user

3 This price list is valid from July 1st to December 31,. Rates may be subject to change. LCSM AREA - CLEANROOM Access fee and operator hourly rate LCSM access fee Operator hourly rate Equipment hourly rate 3 Characterization of photovoltaix cells (Solar simulator) Biological safety cabinet Femto second laser (Mai Tai / OPO) Surface plasmon resonance measurement (SPR) Hall effect station External quantum efficiency measurement (Station EQE) X-ray diffractometer (DCD Waterloo and HRXRD) Electrochemical Impedance System Measurement in concentration up to 1000 suns (Flash tester station) Plastic injection molding machine Profile projector Annealing and CVD processes (Sentrotech, Vulcan, Carbolite and KILN furnaces) Phototransducer station Substrates bonding (Bonder) Wet benches Samples dicing (Disco dicing saw) Hall effect measurements Electrical measurements (Probe stations HP, HV, HF, heated, DC Wentworth) Holographic microscope Photoluminescence measurements (HIPLM) Epifluorescence microscopy Spectroscopy set-up ihr320 Raman spectroscope Photoluminescence measurements (PL Mapper) Fourier Transform Infrared spectroscopy (FTIR) IR lasers UV lasers Epitaxial growth (CBE reactors)* $ 75 / quarter then $ 3 / h from the 26th hour 15 $ / h 20 $ / h 39 $ / h 60 $ / h 105 $ / h 120 $ / h 2250 $ / jour

4 This price list is valid from July 1st to December 31,. Rates may be subject to change. LCSM AREA - CLEANROOM Training prices General training Room training Profile projector Wet benches Optical microscope Zeiss Infinity Substrates bonding (Bonder) Biological safety cabinet Vulcan furnace Epifluorescence microscope Non cryogenic Hall effect station Plastic injection molding machine Phototransducer station X-ray diffractometer - DCD Waterloo X-ray diffractometer - HRXRD Carbolite furnace Sentrotech furnace Photoluminescence measurements - HIPLM or QSPB-reader Angle contact measurements station Cryogenic Hall effect station Surface plasmon resonance - SPR Probe station DC Wentworth Electrochemical Impedance System - EIS Photoluminescence measurements - PL-Mapper Polishing station FTIR Dicing saw IR and UV lasers Room 1154 Room 1162 Room 1164 Room 1174 Room 1178 Room $ / user 60 $ / user 15 $ / user 15 $ / user 60 $ / user 90 $ / user 100 $ / user 150 $ / user 300 $ / user 450 $ / user 960 $ / user

5 This price list is valid from July 1st to December 31,. Rates may be subject to change. IMDQ AREA Access fee and operator hourly rate IMDQ access fee 8 Operator hourly rate Equipment hourly rate 3 Wire saw Profilometer Wet benches Thermal annealing furnace Gold wire bonder Acoustic microscope Probe station Photoluminescence Photolithography Spin coater Oxygen plasma E-beam evaporator* Sputtering* Ion etching system* 15 $ / day 45 $ / h 90 $ / h 150 $ / deposition

6 Billing terms 2 s include administrative costs. A discount of 33% applies to manufacturers who sign a contract with 3IT. 3 Equipment pricing is degressive and depends on the duration of continuous use of the devices. The decreasing tariff is established as follows: 1 hour or less = 100% of the rate; 1 to 4 hours of continuous use = 60% of the rate; 4 to 8 hours of continuous use = 30% of the rate; More than 8 hours of continuous use = 20% of the rate. The equipment can be booked in 30-minute increments. Equipment marked with an asterisk (*) does not benefit from the decreasing tariff. 4 The purchase of probes is at the expense of the user. 5 A supplement may apply when measuring cathodoluminescence (CL) and / or using cryogenic liquid. 6 For the manufacture of masks, the cost of the blank mask and of mask's development and etching are added. 7 Additional charges for thick layers deposition and/or precious metals may be added. Staff time is extra. 8 The access fee is 5$ per day/per user. This covers expenses related to general consumables (suits, headcovers, sticky carpets, glassware, small tools, etc.) and to class environment services (air filters, DI water supply, nitrogen gas supply, etc.). It also gives access to basic means, such as some optical characterization tools (optical microscopes, ellipsometer) and some wet bench operations (sample cleaning)

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

User Fees for the 4D LABS Fabrication Facility

User Fees for the 4D LABS Fabrication Facility User Fees for the 4D LABS Fabrication Facility 1. Clean Room Fees Service Clean Room access: Includes use of all Clean Room tools except for those in the groups listed below Group I tools: Plasma reactors

More information

The Berkeley Marvell NanoLab

The Berkeley Marvell NanoLab The History The Berkeley Marvell NanoLab The Culture The Present The BNLA The Capabilities The End MEMS Industry Group M2M 20May2014 Bill Flounders, Ph.D. NanoLabExecutive Director The History The Berkeley

More information

Nanoelectronics Fabrication Facility

Nanoelectronics Fabrication Facility Nanoelectronics Fabrication Facility Contents Introduction 2 Mask Making Module 4 Photolithography Module 6 Wet Etching and CMP Module 8 Dry Etching and Sputtering Module 10 Thermal Process and Implantation

More information

Stephen A. Jones, Process Engineer Department of Mechanical Engineering State University of New York Binghamton

Stephen A. Jones, Process Engineer Department of Mechanical Engineering State University of New York Binghamton Stephen A. Jones, Process Engineer Department of Mechanical Engineering State University of New York Binghamton P.O. Box 6000, Binghamton, NY 13902 saj0716@gmail.com (607) 351-6060 Stephen A. Jones has

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Micromachining AMT 2505

Micromachining AMT 2505 Micromachining AMT 2505 Shanmuga Raja.B (BVB0912004) Module leader : Mr. Raja Hussain Introduction Micromachining are inherently connected to the evolution of Micro Electro Mechanical Systems (MEMS). Decades

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003

3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003 3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

ARC PHOTOVOLTAICS CENTRE OF EXCELLENCE ANNUAL REPORT

ARC PHOTOVOLTAICS CENTRE OF EXCELLENCE ANNUAL REPORT ARC Centre of Excellence location in Sydney. Figure 4.2.1 4.2 Facilities and Infrastructure The ARC Photovoltaics Centre of Excellence is located at the Kensington campus of the University of New South

More information

Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding

Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding PUBLICATION B Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding Journal of The Electrochemical Society, Vol. 153, No. 1, (2006), pp. G78 G82. Reprinted by permission of ECS The Electrochemical

More information

Copper Interconnect Technology

Copper Interconnect Technology Tapan Gupta Copper Interconnect Technology i Springer Contents 1 Introduction 1 1.1 Trends and Challenges 2 1.2 Physical Limits and Search for New Materials 5 1.3 Challenges 6 1.4 Choice of Materials 7

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Electronics Design Center Equipment

Electronics Design Center Equipment Equipment The contains a variety of equipment used in the production, packaging and testing of microfabricated devices. The major equipment is located in one of three labs, the Room 21 fabrication laboratory,

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information

Solid State Sensors. Microfabrication 8/22/08 and 8/25/08

Solid State Sensors. Microfabrication 8/22/08 and 8/25/08 Solid State Sensors Microfabrication 8/22/08 and 8/25/08 Purpose of This Material To introduce the student to microfabrication techniques as used to fabricate MEMS Sensors Understand concepts not specifics

More information

Platypus Gold Coated Substrates. Bringing Science to the Surface

Platypus Gold Coated Substrates. Bringing Science to the Surface Platypus Gold Coated Substrates Bringing Science to the Surface Overview Gold Coated Substrates - Gold Coating Introduction - Glossary of Terms - Gold Coating Methods - Critical Features Platypus Gold

More information

Institut für Mikroelektronik Stuttgart

Institut für Mikroelektronik Stuttgart Institut für Mikroelektronik Stuttgart A complete list of all semiconductor processes available at the IMS Institut für Mikroelektronik Stuttgart Foundation under civil law IMS CHIPS Allmandring 30a 70569

More information

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 SUPPLEMENTARY INFORMATION A Functional Micro-Solid Oxide Fuel Cell with

More information

Doping and Oxidation

Doping and Oxidation Technische Universität Graz Institute of Solid State Physics Doping and Oxidation Franssila: Chapters 13,14, 15 Peter Hadley Technische Universität Graz Institute of Solid State Physics Doping Add donors

More information

UCF Physics Shared Facilities

UCF Physics Shared Facilities UCF Physics Shared Facilities What can we do? Wafer-scale fabrication including MEMS, optoelectronics, nano-photonics, semiconductor devices, microfluidics, etc. User facility Open to campus and community

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects EE 330 Lecture 8 IC Fabrication Technology Part II - Oxidation - Epitaxy - Polysilicon - Interconnects Review from Last Time MOS Transistor Bulk Source Gate Drain p-channel MOSFET Lightly-doped n-type

More information

Introduction to microfabrication and material characterisation facility at the School of Engineering. Konstantin Vasilevskiy. School of Engineering 1

Introduction to microfabrication and material characterisation facility at the School of Engineering. Konstantin Vasilevskiy. School of Engineering 1 Introduction to microfabrication and material characterisation facility at the School of Engineering Konstantin Vasilevskiy School of Engineering 1 SoE cleanrooms CRL1 CRL4 The Emerging Technology and

More information

Physical Vapor Deposition (PVD) Zheng Yang

Physical Vapor Deposition (PVD) Zheng Yang Physical Vapor Deposition (PVD) Zheng Yang ERF 3017, email: yangzhen@uic.edu Page 1 Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide

More information

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON Maxim Fadel and Edgar Voges University of Dortmund, High Frequency Institute, Friedrich-Woehler Weg 4, 44227 Dortmund, Germany ABSTRACT

More information

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance Ch. 5: p-n Junction Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance of functions such as rectification,

More information

Microelectronic Device Instructional Laboratory. Table of Contents

Microelectronic Device Instructional Laboratory. Table of Contents Introduction Process Overview Microelectronic Device Instructional Laboratory Introduction Description Flowchart MOSFET Development Process Description Process Steps Cleaning Solvent Cleaning Photo Lithography

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Micro and Nanofabrication Unit - MNTEC. MNTEC Cleanroom and micro/nanofabrication facilities

Micro and Nanofabrication Unit - MNTEC. MNTEC Cleanroom and micro/nanofabrication facilities Micro and Nanofabrication Unit - MNTEC MNTEC Cleanroom and micro/nanofabrication facilities Service Regulation / Laboratory Rules MNTEC rules were elaborated in addition to the CEMUP Service Regulations,

More information

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline:

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: Fabrication of p-n junctions Contact Potential Things you should know when you leave Key Questions What are the necessary steps to fabricate

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Fraunhofer IZM Bump Bonding and Electronic Packaging

Fraunhofer IZM Bump Bonding and Electronic Packaging Fraunhofer IZM Bump Bonding and Electronic Packaging Fraunhofer Institute for Reliability and Microintegration (IZM) Gustav-Meyer-Allee 25 13355 Berlin Germany Dipl.-Ing. Thomas Fritzsch Contact: thomas.fritzsch@izm.fraunhofer.de

More information

Technology Drivers for Plasma Prior to Wire Bonding

Technology Drivers for Plasma Prior to Wire Bonding Technology Drivers for Plasma Prior to Wire Bonding James D. Getty Nordson MARCH Concord, CA, USA info@nordsonmarch.com Technology Drivers for Plasma Prior to Wire Bonding Page 1 ABSTRACT Advanced packaging

More information

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Development of Sidewalls Passivating Films Sidewalls get inert species deposited on them with plasma etch Creates

More information

Dr. Priyabrat Dash Office: BM-406, Mob: Webpage: MB: 205

Dr. Priyabrat Dash   Office: BM-406, Mob: Webpage:  MB: 205 Email: dashp@nitrkl.ac.in Office: BM-406, Mob: 8895121141 Webpage: http://homepage.usask.ca/~prd822/ MB: 205 Nonmanufacturing In continuation from last class... 2 Top-Down methods Mechanical-energy methods

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS INTRODUCTION TO Semiconductor Manufacturing Technology SECOND EDITION Hong Xiao TECHNISCHE INFORMATIONSBiBUOTHEK UNIVERSITATSBIBLIOTHEK HANNOVER SPIE PRESS Bellingham,Washington USA Contents Preface to

More information

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin Dr. Frank Schmidt The Company Company Private company, founded 1990 80 employees ISO 9001 Location Science & Technology Park,

More information

CERN/NA62 GigaTracKer Hybrid Module Manufacturing

CERN/NA62 GigaTracKer Hybrid Module Manufacturing CERN/NA62 GigaTracKer Hybrid Module Manufacturing Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25 13355 Berlin Germany Dipl.-Ing. Thomas Fritzsch Contact: Fraunhofer IZM

More information

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Applied Surface Science 212 213 (2003) 388 392 Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Marcus A. Pereira, José A. Diniz, Ioshiaki Doi *, Jacobus W. Swart

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts)

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts) 6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term 2007 By Brian Taff (Adapted from work by Feras Eid) Solution to Problem Set 2 (16 pts) Issued: Lecture 4 Due: Lecture

More information

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer Thomas M. Adams Richard A. Layton Introductory MEMS Fabrication and Applications Springer Contents Preface xiü Part I Fabrication Chapter 1: Introduction 3 1.1 What are MEMS? 3 1.2 Why MEMS? 4 1.2.1. Low

More information

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Development of Sidewalls Passivating Films Sidewalls get inert species deposited on them with plasma etch Creates

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Supporting Information. Microfabrication and Integration of Diazonium-based Aromatic Molecular Junctions

Supporting Information. Microfabrication and Integration of Diazonium-based Aromatic Molecular Junctions Supporting Information Microfabrication and Integration of Diazonium-based Aromatic Molecular Junctions Jie Ru 1,2, Bryan Szeto 1, Andrew Bonifas 1,3,Richard L. McCreery 1,2 1 National Institute for Nanotechnology,

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis Supporting Information: Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis Cindy K. Harnett, Yehya M. Senousy, Katherine A. Dunphy-Guzman #, Jeremy Templeton * and Michael

More information

National Nano Fabrication Centre (NNFC)

National Nano Fabrication Centre (NNFC) National Nano Fabrication Centre (NNFC) Tool and Process Capabilities 1. Lithography 1.1 Direct Laser Writer/Lithography 1.1.1 Preferred Design file format: GDS2 or CIF 1.1.2 Please note that coloured

More information

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook CMOS Fabrication Dr. Bassam Jamil Adopted from slides of the textbook CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different

More information

Wafer (1A) Young Won Lim 4/30/13

Wafer (1A) Young Won Lim 4/30/13 Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications

Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications Authors: Jeb. H Flemming, Kevin Dunn, James Gouker, Carrie Schmidt, Roger Cook ABSTRACT Historically, while glasses have many

More information

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS - Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS Chemnitz System Packaging Page 1 System Packaging Outline: Wafer level packaging for MEMS

More information

Atomic Layer Deposition(ALD)

Atomic Layer Deposition(ALD) Atomic Layer Deposition(ALD) AlO x for diffusion barriers OLED displays http://en.wikipedia.org/wiki/atomic_layer_deposition#/media/file:ald_schematics.jpg Lam s market-leading ALTUS systems combine CVD

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

Semiconductor Manufacturing Technology. IC Fabrication Process Overview

Semiconductor Manufacturing Technology. IC Fabrication Process Overview Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 00 by Prentice Hall Chapter 9 IC Fabrication Process Overview /4 Objectives After studying the material in this chapter, you

More information

Optimization of a Chlorine-Based Deep Vertical Etch of GaN Demonstrating Low Damage and Low Roughness

Optimization of a Chlorine-Based Deep Vertical Etch of GaN Demonstrating Low Damage and Low Roughness Optimization of a Chlorine-Based Deep Vertical Etch of GaN Demonstrating Low Damage and Low Roughness Running title: Low Damage Cl2/Ar Deep Vertical GaN Etch Running Authors: Tahhan et al. Maher Tahhan

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Micro-Nano Fabrication Research

Micro-Nano Fabrication Research Micro-Nano Fabrication Research Technical Education Quality Improvement Programme 22-23 December 2014 Dr. Rakesh G. Mote Assistant Professor Department of Mechanical Engineering IIT Bombay rakesh.mote@iitb.ac.in;

More information

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Top Side Conductor vacuum deposition Aluminum sputter deposit in Argon plasma CVC 601-sputter deposition

More information

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique IOP Publishing Journal of Physics: Conference Series 61 (2007) 369 373 doi:10.1088/1742-6596/61/1/074 International Conference on Nanoscience and Technology (ICN&T 2006) Application of ultra-thin aluminum

More information

Lecture #18 Fabrication OUTLINE

Lecture #18 Fabrication OUTLINE Transistors on a Chip Lecture #18 Fabrication OUTLINE IC Fabrication Technology Introduction the task at hand Doping Oxidation Thin-film deposition Lithography Etch Lithography trends Plasma processing

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time Etching Dry etch (anisotropic) SiO

More information

S C I E N T I F I C E N G I N E E R

S C I E N T I F I C E N G I N E E R SCIENTIF IC ENGINEER SUMMARY: Research Scientist with a PHD in Engineering Physics with numerous Publications, and Patents. Extensive R&D experience. Expertise includes working with nano and measurement

More information

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Photoenergy Volume 2012, Article ID 971093, 5 pages doi:10.1155/2012/971093 Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Bangwu Liu, Sihua Zhong, Jinhu Liu, Yang

More information

Supporting Information. graphene oxide films for detection of low. concentration biomarkers in plasma

Supporting Information. graphene oxide films for detection of low. concentration biomarkers in plasma Supporting Information Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma Jinsik Kim a, Myung-Sic Chae a, Sung Min Lee b, Dahye

More information

Make sure the exam paper has 9 pages total (including cover page)

Make sure the exam paper has 9 pages total (including cover page) UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2010 EE143 Midterm Exam #2 Family Name First name SID Signature Solution Make sure the exam

More information

Final Year Project Proposal 1

Final Year Project Proposal 1 Final Year Project Proposal 1 Mechanical testing for high temperature polymers Mr Eric Phua Jian Rong (JRPhua@ntu.edu.sg) In offshore subsea drilling, different types of microelectronics devices and sensors

More information

p. 57 p. 89 p. 97 p. 119

p. 57 p. 89 p. 97 p. 119 Preface Program Committee Members Transistor Physics History John Bardeen and Transistor Physics p. 3 Challenges p. xiii p. xv Technology in the Internet Era p. 33 Metrology Needs and Challenges for the

More information

Process Flow in Cross Sections

Process Flow in Cross Sections Process Flow in Cross Sections Process (simplified) 0. Clean wafer in nasty acids (HF, HNO 3, H 2 SO 4,...) --> wear gloves! 1. Grow 500 nm of SiO 2 (by putting the wafer in a furnace with O 2 2. Coat

More information

Mirror Coatings for Next Generation Detector

Mirror Coatings for Next Generation Detector Mirror Coatings for Next Generation Detector Prof. Shiuh Chao (Member of LSC) Institute of Photonics Technologies (IPT) National Tsing Hua University (NTHU) Hsinchu, Taiwan, R.O.C. The 3rd KAGRA International

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Gas and surface applications of atmospheric pressure plasmas

Gas and surface applications of atmospheric pressure plasmas Gas and surface applications of atmospheric pressure plasmas Eugen Stamate Technical University of Denmark Roskilde 4000, Denmark OUTLINE Introduction of DTU Energy Conversion and Storage Activities in

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

Fabrication Techniques for Thin-Film Silicon Layer Transfer

Fabrication Techniques for Thin-Film Silicon Layer Transfer Fabrication Techniques for Thin-Film Silicon Layer Transfer S. L. Holl a, C. A. Colinge b, S. Song b, R. Varasala b, K. Hobart c, F. Kub c a Department of Mechanical Engineering, b Department of Electrical

More information

3. Photolithography, patterning and doping techniques. KNU Seminar Course 2015 Robert Mroczyński

3. Photolithography, patterning and doping techniques. KNU Seminar Course 2015 Robert Mroczyński 3. Photolithography, patterning and doping techniques KNU Seminar Course 2015 Robert Mroczyński Critical technology processes Photolithography The aim of this process is to transfer (in the most accurate

More information

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 5: Fabrication processes QUIZ 3: CMOS layout Quiz Discussion Rationale If you know how something is put together, you can figure out how to take it

More information

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Journal of Optoelectronics and Advanced Materials Vol. 4, No. 3, September 2002, p. 809-812 MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Foundation for Research

More information