Wafer Level CSP using Low Cost Electroless Redistribution Layer

Size: px
Start display at page:

Download "Wafer Level CSP using Low Cost Electroless Redistribution Layer"

Transcription

1 Wafer Level CSP using Low Cost Electroless Redistribution Layer Thorsten Teutsch, Thomas Oppert, Elke Zakel, Eckart Klusmann +, Heinrich Meyer +, Ralf Schulz +, Jörg Schulze + Pac Tech Packaging Technologies GmbH ATOTECH Deutschland GmbH Am Schlangenhorst Erasmusstr. 20 D Nauen, Germany D Berlin, Germany Phone: +49 (0)3321/ Phone: +49 (0)30/ Fax: +49 (0)3321/ Fax: +49 (0)30/ oppert@pactech.de ralf.schulz@atotech.de Abstract A driving force to achieve increased speed and performance along with higher I/O count is the Flip Chip (FC) Technology which has therefore an high level of importance for a variety of applications. A breakthrough, however, will be the use of flip chip due to cost reduction. For this aim it is essential to use low cost bumping techniques. However, to provide FC technologies also for devices with high I/O count and high pin density applications like Microcontrollers, RAMBUS devices, etc... it is necessary to redistribute the historically peripheral bond pads with ultra fine pad pitch into a wafer level CSP. This paper describes a low cost electroless Ni/Au Under Bump Metallization (UBM) and a wafer level redistribution process based on electroless copper circuitization. It includes the use of a novel plasma enhanced chemical vapour deposition (PECVD) process to deposit a bifunctional nano-layer acting as an adhesion promotor and as a catalyst for electroless copper deposition. The described techniques are suitable for all wafer passivation types, which are used in industry today. The complete redistribution process is based on batch processing and less masking and photoimaging steps. By using the electroless Nickel process and wafer level stencil solder printing the process is highly cost efficient and has large volume manufacturing capability. Results and also reliability measurements will be presented. Finally a roadmap regarding the implementation of this process into backend high volume production is shown. Introduction There are two major reasons, which will make it necessary to redistribute an existing device layout: 1) Due to the dualism between FC and wirebond assembly techniques most of the available device types will have a peripheral pad layout, which will lead to ultra fine pitch structures on devices with high I/O count, such as microprocessor, etc. Standard low cost bumping techniques using solder reflow for assembly can not fulfill the requirements of bumping these tight pitches, which are below the process limitations of all commercially available solder bumping techniques. Also the PCB technology is not able in these days to deliver low cost boards (FR4, FR5) for these applications. A pad redistribution into an area array layout will increase the pitch and provide FC optimized and FC capable dies. 2) The second reason to redistribute a chip is the possibility to design and manufacture a wafer level CSP, which has advantages compared to standard COB assembly techniques. The increase in reliability due to the larger gap between chip and substrate and the reduce of manufacturing costs, in cause of the absence of an underfilling process. For nearly all existing FC techniques - also for the redistribution process - a bump formation on the chip I/O is needed. Established techniques like the C4 process [1,2] do not fulfill the cost requirements for the consumer market. A selective chemical plating method can reduce bumping cost significantly since it does not require masking or metal sputtering. Additionally this technique easily allows a parallel processing of multiple wafers, leading to a high throughput. The special cost advantage of electroless Ni is given by the possibility of parallel batch processing. Fig. 1 shows a batch of wafers which are processed in parallel.

2 The feasibility and reliability of this bumping process has been proven in a series of published technical papers [3,4,5]. Figure 3 shows electroless Ni/Au as a basis for Anisotropic Conductive Adhesive (ACF) Flip Chip Assembly, for polymeric Flip Chip Assembly (Conductive Adhesive) and for soldering and direct chip attach type of applications using different solder alloys. Electroless Ni/Au UBM Fig. 1: Wafers in parallel batch processing It was shown earlier [3] that parallel electroless Ni processing is capable up to 300 mm wafers, which will bring additional cost advantages: no specific equipment or additional invest is needed (Fig.2). Fig. 2: Automatic Electroless Nickel/Au Bumping Line In the FC assembly Ni/Au bumps are used as an UBM for solder applications. Besides of this the Ni can also offer a stand-off, e.g. for chip on glass (COG) using ACF [5]. Anisotropic Conductive Adhesive Polymer Flip Chip Technology (Conductive Adhesive) Flip Chip Solder Interconnection possible alloys: SnPb63/37 PbSn95/05 AuSn80/20 leadfree solder of next generation Fig. 3: Electroless Nickel/Au UBM - for different Flip Chip Assembly Processes Regarding the low cost wafer level redistribution, it is especially the ultra fine pitch capability of electroless Nickel which will be recommend itself as the ultimate solution of an universal UBM formation for a rewiring process. The connecting redistribution traces and the redistributed bond pads will be processed in an semiadditive process by using electroless Cu plating on a special photodielectric. Due to the selective plating capability of Electroless Ni/Au on Al and Cu, Ni bumps can be used as an UBM on the redistributed Cu pads, too. After solder reflow (Bumping and FC Assembly) the Ni/Au bumps fulfill the following function. They protect the Al or the Cu and act as an adhesion layer and a diffusion barrier and guarantee a stable and reliable contact to the Al or redistributed Cu bond pads [4]. Summarizing all this advantages and capabilities it becomes very reasonable, that electroless Nickel as an UBM is a key process for a low cost wafer level redistribution process. Additionally it is necessary to reduce the manufacturing costs of the complete redistribution process, by using low cost techniques for Cu plating and less photomasking and serial process steps.

3 Backend Processing Probed Wafer Ni/Au Bumping & Redistribution The equipment available for these standard processes based on large work pieces or printed circuit boards is not suitable for wafer bumping. In order to fulfill the specific requirements for wafer bumping a new modular electroless Ni wafer bumping line has been developed. Each module can take batches of 50 wafers 8" or 10 wafers 12". Such processing is a key to the extremely high throughput of this bumping line which again determines the overall cost of the bumping process. Electroless Ni/Au Bumping FCOB or CSP Backside Coating Aluminium Cleaning Test/ Burn In Zincate Pretreatment Ship to customer Fig. 4: Electroless Ni/Au and wafer level redistribution in backend processes Figure 4 shows a possibility to integrate electroless bumping and wafer level redistribution in backend processes. Electroless Ni/Au bumping The electroless Ni/Au bumping is a wet-chemical and maskless process. With the developed manufacturing process all types of wafers can be bumped with a standard process in excellent quality. In a special designed bumping line wafers, from 4 (100 mm) to 12 (300 mm) diameter can be plated [3,7]. The key for a successful, reproducible and reliable manufacturing process is in the used chemicals and equipment. The electroless Nickel bumping process can be performed with standard chemicals available on the market for simple test structures and test dies without electrical inner circuitry. However, when applied to functional wafers with complex inner electrical structures, different metallization and different passivations, the process requires specific proprietary chemical compositions and know how for a reproducible and reliable result. Here is the key to electroless Nickel implementation in production. This is an explanation for the multitude of investigations and research projects in industry and in institutes which did not lead to a direct manufacturing process in the past. Electroless Nickel is used in industry for a wide range of applications in which Al work pieces are plated with Ni. Electroless Ni Immersion Gold Coating Removal Fig. 5: Process Flow of electroless Ni/Au- Before the wafers can be metallized in the line the wafer backside has to be covered by a stable resist prior to the chemical bumping process. The next step is a treatment of the pads in an Al cleaner which removes oxide layers while the Al surface is micro-etched. The pretreatment is done in the first modules of the line. An alkaline zincate solution is used for activating the Al surface. For the electroless Ni plating a bath based on sodium hypophosphite is used. The rate of Ni deposition is 20µm/h. A final Au coating on the Ni is necessary to prevent oxidation and enables long-time solderability of bumps. With this Au coating a maximum Au thickness of 0.25µm can be achieved (typ. 0.05µm). The complete process flow is shown in figure 5. The quality of bumps is controlled by optical microscopy, profilometer measurements and shear tests. For detailed analysis crosssectioning, SEM and EDX are used.

4 Feature Wafer size Wafer backside Pad geometry Acceptable Range 4 (100 mm) 12 (300 mm) Any Any (square, rectangular, round) Pad size > 40 µm for production (>10 µm for prototyping) Pad spacing? 2x bump height + 10µm for production (>5 µm for prototyping) Fig. 6: Ultra fine pitch bumping (Pitch: 50µm) The minimal bump height is 1µm to have a closed and voidless Ni-Layer. The maximal height is limited by the pad to pad spacing. The bump height must not be larger than ½ pad spacing minus 5µm to avoid short circuits between neighboring pads by over-growing Ni. A height of 5µm is recommended for FC soldering. Figure 6 shows a part of an electroless Ni/Au bumped Wafer with a pad pitch of 50µm. This meets the requirements of reliability and fast processing. The adhesion of the bumps on the Al pads depends on the pad area. For 100 x 100 µm pads the shear strength is at least 100g. Bump characteristic Recommended height for FC Soldering Maximum height Specification 5 µm Material NiP 10% Resistivity Hardness Adhesion to Al 100x100 µm² pad?½ pad spacing -5µm 70 µ? cm 550 mhv >100g (typ.150g) Au coating thickness µm Tab. 1: Characteristics of Ni/Au Bumps The uniformity of bump height is? 2% on 4 (100 mm) wafers,? 4 % on 8 (200 mm) wafers and? 5 % on 12, which is sufficient for nearly all types of applications. Detailed data on the reliability of the Al/Ni interface was published [4]. The Ni/Au bump characteristics are summarized in table 1. Metallization Al thickness Wafer probing Passivation scribeline AlSi 1%, AlSi 1% Cu 0.5% or AlCu 2% 1 µm for production (0.5 µm for prototyping) Before or after Ni/Au plating Defect-free nitride, oxide, polyamide, without any residues on the pads Isolated (test pads acceptable) Tab. 2: Design rules for the Ni/Au bumping process For achieving reliable and reproducible results regarding the electroless Ni/Au bumping of several types of wafers from 4" up to 12", design rules have been defined. As pad materials AlSi 1%, AlSi 1% Cu 0.5%, AlCu 2% and other alloys of these metals were investigated. All types have been processed with good results. Nevertheless there are some restrictions on the wafers to be Ni bumped. The Al bondpad thickness should be 1µm or more in order to have sufficient Al after cleaning and activation. There are no limits to passivation thickness but the passivation must be free of defects. Cracks cause a growth of Ni which can produce short circuit. This will also occur on parts of a wafer surface which were scratched by improper handling. Ni also grows on Si which is not covered by an oxide or passivation layer. Unprotected Si in the wafer scribe line will cause plating of a Ni layer with low adhesion. Therefore the scribe line should be almost insulated, except for defined process control structures. A summary of the wafer design rules is shown in table 2 [7]. All these results and requirements can be transferred to electroless Ni/Au bumping on Cu pads. Of course the Ni/Au process has to be modified, especially the pretreatment and activation processes have to be changed for bumping on an other bond pad metallurgy. The new electroless Ni/Au on Cu process will be qualified together with the redistribution process within the

5 next few months by doing the necessary reliability investigations. Wafer Level Redistribution ElastoPAC To start with the wafer level redistribution a redistribution design has to be made first. Ni/Au - Bumping of Bond Pads Spinning of Dielectric Layer Photo Imaging: Opening of Ni/Au Bond Pads Formation of Seed Layer Full Area Copper Deposition Resist Spinning and Photo Structuring Copper Etching Resist Spinning and Photo Imaging Ni/Au - Bumping of Redistributed Pads Fig. 7: Redistribution Layout for Pac 2.1 Test Wafer As an example and a test vehicle Pac Tech s 4 inch test wafer Pac2.1 with a peripheral layout of 200 micron pitch and a PSG passivation was used. Figure 7 shows the redistribution design for the Pac 2.1 test wafer. Dielectric characteristic Material Specification Epoxy based Solder Stencil Printing Fig. 8: Process flow for Wafer Level Redistri-bution (Photomasking steps in red) Initially the redistribution starts with Ni/Au bumping of the Al bond pads up to an Ni height of 5 µm (Fig. 8). Then a epoxy based dielectric is spinned on the existing wafer passivation. The mechanical and electrical properties of the dielectric are listed in table 3. Thickness 10 µm Dielectric Constant 1 MHz: GHz: 3.4 PbSn Insulating Resistance 10 14? CTE ppm/ C Soldermask T G C Water Absorption < 0,5% Tab. 3: Characteristics of Photodielectric Passivation Ni/Au-Bump Al-Pad Interposer Redistribution (Cu) Fig. 9: Cross section of wafer level redistribution Wafer passivation material can be SiN, SiO 2, PSG as well as PI. Additionally to our standard dielectric BSC and PI is currently under evaluation. For full area copper deposition a seed layer formation will be followed by an electroless Cu plating batch process. There are two prerequisites of electroless copper metallization of a dielectric material. First, adhesion must Si

6 be obtained and second, proper catalytic activation has to be achieved. The seed layer generation takes place as a gas phase plasma process (PECVD). Therefore, a plasma reactor with a parallel plate design and a RF-powered circular substrate electrode is used. This process is developed by Atotech for direct metallization of dielectrics for future requirements in PCB industry [6] and specially adapted for wafer applications. Figure 10 shows a scheme of the PECVD chamber and gives the standard plasma parameters. Fig. 11: Cu Redistribution Layer Fig. 10: Scheme of the PECVD chamber The plasma metallization consists of three different steps. In a first pretreatment step the dielectric is conditioned by plasma without roughening the surface in contrast to wet chemical processes. The second step is the deposition of a 5-10 nm thick transition metal layer by PECVD. In a subsequent third step, this catalytically active seed layer activates an electroless copper metallization bath. This direct metallization by PECVD is applicable to a wide range of polymers which are used as dielectric in electronic industry like PI, epoxy resins or even fluoro polymers for high-frequency applications. It leads to very strong polymer-metal adhesion without roughening of the polymer surface. E. g. on PI adhesion of more than 20 N/cm (peel off test) is reachable. The Cu becomes structured by an photomasking and etching process. At least the surface is covered by an solder mask and the opened Cu bond pads are NiAu bumped again. The results of the Cu redistribution Layer for our test vehicle is shown in figure 11. Solder bump formation can be done by solder stencil printing, where an automatic printing machine is used. Typical solder paste are Pb37Sn63 alloys with particle sizes below 20 µm. The stencil apertures are adapted to the specific application. The volume of the printed paste is determined by the aperture diameter and stencil thickness. The selection of appropriate stencil geometry is essential for printing with high yield. Special design rules have been developed for this process [7]. The subsequential solder is reflowed and flux residues are cleaned. The solder volume after reflow will be approx. 50% of the paste volume. Figure 12 shows printed solder paste after reflow in a pitch of 180 µm. Fig. 12: Stencil printed Solder Bumps Figure 9 shows a detailed cross section drawing of the complete redistribution layers. Wafer Level CSP ElastoPAC To implement the wafer level redistribution into a wafer level CSP it is necessary to increase the solder bump height. Pac Tech is using a propriety process, which cannot be shown in detail at the moment. Essentially it is necessary to use techniques like LS 2 and SB 2 for solder ball attach [8,9]. The LS 2 process, like it is shown in figure 13, combines 2 techniques: 1) solder ball gang placement by using a stencil 2) solder ball reflow by using a laser scanner

7 The advantages due to stencil printing are, the possibility to apply a higher solder volume on the redistributed pads and the much easier and more efficient flux cleaning compared to an oven reflow, because of the only locally applied laser energy, which will not effect the flux residues beneath the solder spheres. An additional advantage of a ElastoPAC as a wafer level CSP is that for encapsulation halogen-free components can be use. The SB 2 is used for repair of sites with missing or bridged balls. used for solder printing of the redistributed wafers, in cause of the increased and now suitable pitch. Preliminary results of lead-free solder printing are presented in the following. Chip Ball Placement Laser TCU Camera Scanner Chip Laser Detection + Laser Reflow Fig. 14: Reflowed SnAgCu solder Bumps Figure 14 shows stencil printed SnAg4Cu0,5 solder bumps after reflow and flux cleaning on a layout with 250 µm pitch. 200µm pitch is currently under development. Lead-free bump characteristic Data Chip Optical Inspection Hs3 Shear force 96,75 g Standard deviation 5,24 g Laser Ball Placement SB² Shear mode Bulk solder Chip Automatic integrated Repair with SB² Bump height 101 µm Fig. 13: LS 2 Ball Gang Placement and Laser Reflow [9] The whole process is comparable due to cost and process time with the stencil printing technique. Lead-free Solder and environmental Aspects Concentrating on the material aspects there are a lot of different opportunities due to the usage of different solder materials as well for the wafer level redistribution as for the wafer level CSP. In the case of the LS 2 or SB 2 solder application for CSP it is easy to understand that different solder alloys, especially lead-free solder, can be imple-mented without any further process development or additional costs only by using the commercially available solder balls of the specific alloys. On the other hand lead-free solders, which are currently not available for ultra-fine pitch stencil printing, can than Standard deviation 1.72 µm Cleaning result Excellent Pad size 100 µm Tab. 4: Results of lead-free solder stencil printing The result is shown in figure 14 and the measured data is summarized in table 4. SnAg3,5 solder paste is also tested and for prototyping quantities available. The results are comparable with SnAgCu. The transfer of this process on redistributed surfaces will be done and reliability results will be available soon. Summary and Outlook A new low cost wafer level redistribution process was presented. Using eletroless Ni as a key technology the process fulfills together with other wet chemical batch plating techniques, like electroless Cu, and the less masking steps the requirements of a low cost process.

8 Further advantages of electroless Ni are the selective plating on Al and Cu bond pads and the ultra fine pitch capability. The epoxy based photodielectric makes the process capable for all wafer passivation types, which are used in industry today and offers as a plating base a reliable adhesion for the Cu redistributed bond pads and circuits. The PECVD deposition of the seed layer for electroless Cu plating opens due to the flexibility of the process beside high adhesion also perspectives for the metallization of future polymer dielectrics. Solder application can be done by stencil printing and in the case of an wafer level CSP by LS 2 method. The advantage of using LS 2 due to solder alloy flexibility and reliability aspects was pointed out. In the near future reliability data on all of the presented new techniques will be available: - Reliability tests for high melting lead-free solder compounds stencil printed on Ni/Au UBM for automotive applications are under performance - Redistribution of 2 sensor devices followed by assembly and thermal cycling investigations are under preparation and will be available in Q2/ Ni/Au on Cu is already available for prototyping services and will be qualified on customer products soon References [1] De Haven, Dietz, Controlled Collapse Chip Carrier (C4) an Enabling Technology, Proceedings of the 1994 Electronic Components and Technology Conference (44 th ECTC), Washington D.C., pp [2] L. F. Miller, Controlled Collapse After Reflow Chip Joining, IBM J. Res. Develop., Vol. 13, pp , May, [3] T. Oppert, T. Teutsch, E. Zakel, D. Tovar, A Bumping Process for 12" Wafers, Proceedings of the International Electronics Manufacturing Technology Symposium (24 th IEMT), Austin TX, pp , October 18-19, 1999 [4] T. Oppert, E. Zakel, T. Teutsch, A Roadmap to Low Cost Flip Chip and CSP using Electroless Ni/Au, Proceedings of the International Electronics Manufacturing Technology Symposium (IEMT) Symposium, Omiya, Japan, April 15-17, 1998 [5] M. Vrana, J. De Baets, A. Van Calster, D. Wojciechowski, A. Ostmann, H. Reichl, An Anisotropic Adhesive Flip Chip Technology for LCD Drivers, Proceedings of the SID Conference 1996 [6] R. Heinz, E. Klusmann, H. Meyer, R. Schulz, PECVD of transition metals for the production of high-density circuits, Surface and Coatings Technology (1999) [7] Pac Tech Webpage: [8] P. Kasulke, W. Schmidt, L. Titerle, H. Bohnaker, T. Oppert, E. Zakel, Solder Ball Bumper SB 2 -A flexible manufacturing tool for 3-dimensional sensor and microsystem packages, Proceedings of the International Electronics Manufacturing Technology Symposium (22 nd IEMT), Berlin, April 27-29, 1998 [9] G. Azdasht, L. Titerle, H. Bohnaker, P. Kasulke, E. Zakel, Ball Bumping for Wafer Level CSP - Yield Study of Laser Reflow and IR-Oven Reflow, Proceedings of the Chip Scale International, San Jose CA, September 14-15, 1999

A Wafer Level CSP based on a Low Cost Electroless Redistribution Layer

A Wafer Level CSP based on a Low Cost Electroless Redistribution Layer A Wafer Level CSP based on a Low Cost Electroless Redistribution Layer Thomas Oppert, Thorsten Teutsch, Elke Zakel, Pac Tech Packaging Technologies GmbH Am Schlangenhorst 15-17 D-14641 Nauen, Germany Phone:

More information

Low Cost Flip Chip Bumping

Low Cost Flip Chip Bumping Low Cost Flip Bumping Thomas Oppert, Thorsten Teutsch, Elke Zakel Pac Tech Packaging Technologies GmbH Am Schlangenhorst 15 17 D-14641 Nauen, Germany Phone: +49 (0)3321/4495 0 Fax: +49 (0)3321/4495 23

More information

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany INTRODUCTION Modern microelectronic products require packages that address the driving forces of reduced size and weight, as well as increased performance at high frequencies. Flipchip and direct chip

More information

A Roadmap to Low Cost Flip Chip Technology and Chip Size Packaging using Electroless Nickel Gold Bumping

A Roadmap to Low Cost Flip Chip Technology and Chip Size Packaging using Electroless Nickel Gold Bumping A Roadmap to Low Cost Flip Chip Technology and Chip Size Packaging using Electroless Nickel Gold Bumping T. Oppert, T. Teutsch, E. Zakel Pac Tech Packaging Technologies GmbH Am Schlangenhorst 15-17, Germany

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

MEPTEC Semiconductor Packaging Technology Symposium

MEPTEC Semiconductor Packaging Technology Symposium MEPTEC Semiconductor Packaging Technology Symposium Advanced Packaging s Interconnect Technology Process Shift and Direction October 23, 2014 Jay Hayes- Director of Business Development -Bumping and Flip

More information

Flip Chip - Integrated In A Standard SMT Process

Flip Chip - Integrated In A Standard SMT Process Flip Chip - Integrated In A Standard SMT Process By Wilhelm Prinz von Hessen, Universal Instruments Corporation, Binghamton, NY This paper reviews the implementation of a flip chip product in a typical

More information

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Zaheed S. Karim 1 and Jim Martin 2 1 Advanced Interconnect Technology Ltd. 1901 Sunley Centre, 9 Wing Yin Street, Tsuen Wan, Hong

More information

Low Cost Wafer Bumping of GaAs Wafers

Low Cost Wafer Bumping of GaAs Wafers Low Cost Wafer Bumping of GaAs Wafers Andrew Strandjord, Thorsten Teutsch, Axel Scheffler, Bernd Otto, and Jing Li Pac Tech USA - Packaging Technologies, Inc. Santa Clara, CA USA 95050 408-588-1925 Abstract

More information

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding Chapter 4 Fabrication Process of Silicon Carrier and Gold-Gold Thermocompression Bonding 4.1 Introduction As mentioned in chapter 2, the MEMs carrier is designed to integrate the micro-machined inductor

More information

3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction

3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction 3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction Gilbert Lecarpentier*, Jean-Stéphane Mottet* SET S.A.S. (Smart Equipment Technology), 131 Impasse Barteudet, 74490

More information

Fraunhofer IZM Bump Bonding and Electronic Packaging

Fraunhofer IZM Bump Bonding and Electronic Packaging Fraunhofer IZM Bump Bonding and Electronic Packaging Fraunhofer Institute for Reliability and Microintegration (IZM) Gustav-Meyer-Allee 25 13355 Berlin Germany Dipl.-Ing. Thomas Fritzsch Contact: thomas.fritzsch@izm.fraunhofer.de

More information

YOUR Strategic TESTING ENGINEERING CONCEPT SMT FLIP CHIP PRODUCTION OPTO PACKAGING PROCESS DEVELOPMENT CHIP ON BOARD SUPPLY CHAIN MANAGEMENT

YOUR Strategic TESTING ENGINEERING CONCEPT SMT FLIP CHIP PRODUCTION OPTO PACKAGING PROCESS DEVELOPMENT CHIP ON BOARD SUPPLY CHAIN MANAGEMENT YOUR Strategic TECHNOLOGY PARTNER Wafer Back-End OPTO PACKAGING PROCESS DEVELOPMENT CONCEPT FLIP CHIP PROTOTYping ENGINEERING TESTING SMT PRODUCTION CHIP ON BOARD SUPPLY CHAIN MANAGEMENT Next Level 0f

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

5. Packaging Technologies Trends

5. Packaging Technologies Trends 5. Packaging Technologies Trends Electronic products and microsystems continue to find new applications in personal, healthcare, home, automotive, environmental and security systems. Advancements in packaging

More information

Flip Chip Joining on FR-4 Substrate Using ACFs

Flip Chip Joining on FR-4 Substrate Using ACFs Flip Chip Joining on FR-4 Substrate Using ACFs Anne Seppälä, Seppo Pienimaa*, Eero Ristolainen Tampere University of Technology Electronics Laboratory P.O. Box 692 FIN-33101 Tampere Fax: +358 3 365 2620

More information

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim

More information

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Li Zheng, Student Member, IEEE, and Muhannad S. Bakir, Senior Member, IEEE Georgia Institute of Technology Atlanta,

More information

CERN/NA62 GigaTracKer Hybrid Module Manufacturing

CERN/NA62 GigaTracKer Hybrid Module Manufacturing CERN/NA62 GigaTracKer Hybrid Module Manufacturing Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25 13355 Berlin Germany Dipl.-Ing. Thomas Fritzsch Contact: Fraunhofer IZM

More information

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION Frank Grano, Felix Bruno Huntsville, AL Dana Korf, Eamon O Keeffe San Jose, CA Cheryl Kelley Salem, NH Joint Paper by Sanmina-SCI Corporation EMS, GTS

More information

Failure Modes in Wire bonded and Flip Chip Packages

Failure Modes in Wire bonded and Flip Chip Packages Failure Modes in Wire bonded and Flip Chip Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract The growth of portable and wireless products is driving the miniaturization

More information

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Hugh Roberts Atotech USA Inc., Rock Hill, SC, USA Sven Lamprecht, Gustavo Ramos and Christian Sebald Atotech Deutschland

More information

JOINT INDUSTRY STANDARD

JOINT INDUSTRY STANDARD JOINT INDUSTRY STANDARD AUGUST 1999 Semiconductor Design Standard for Flip Chip Applications ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Semiconductor Design Standard for Flip Chip Applications About

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 15 Lead in solders to complete a viable electrical connection between semiconductor

More information

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015)

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) Content 1. Geometric properties 1.01. Available ceramic types / thicknesses... 03 1.02. thicknesses (standard)... 03 3. Quality

More information

SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL

SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL 2017 IEEE 67th Electronic Components and Technology Conference SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL YoungRae Kim 1, JaeHun Bae 1, MinHwa Chang 1, AhRa Jo 1,

More information

New Technology for High-Density LSI Mounting in Consumer Products

New Technology for High-Density LSI Mounting in Consumer Products New Technology for High-Density Mounting in Consumer Products V Hidehiko Kira V Akira Takashima V Yukio Ozaki (Manuscript received May 29, 2006) The ongoing trend toward downsizing and the growing sophistication

More information

YOUR Strategic TESTING ENGINEERING CONCEPT SMT FLIP CHIP PRODUCTION OPTO PACKAGING PROCESS DEVELOPMENT CHIP ON BOARD SUPPLY CHAIN MANAGEMENT

YOUR Strategic TESTING ENGINEERING CONCEPT SMT FLIP CHIP PRODUCTION OPTO PACKAGING PROCESS DEVELOPMENT CHIP ON BOARD SUPPLY CHAIN MANAGEMENT YOUR Strategic TECHNOLOGY PARTNER Wafer Back-End OPTO PACKAGING PROCESS DEVELOPMENT CONCEPT FLIP CHIP PROTOTYping ENGINEERING TESTING SMT PRODUCTION CHIP ON BOARD SUPPLY CHAIN MANAGEMENT Next Level 0f

More information

Y.C. Chan *, D.Y. Luk

Y.C. Chan *, D.Y. Luk Microelectronics Reliability 42 (2002) 1195 1204 www.elsevier.com/locate/microrel Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex

More information

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip EPRC 12 Project Proposal Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip 15 th Aug 2012 Page 1 Introduction: Motivation / Challenge Silicon device with ultra low k

More information

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Vern Solberg STC-Madison Madison, Wisconsin USA Abstract The motivation for developing higher density IC packaging continues to be

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

Design for Flip-Chip and Chip-Size Package Technology

Design for Flip-Chip and Chip-Size Package Technology Design for Flip-Chip and Chip-Size Package Technology Vern Solberg Solberg Technology Consulting Madison, Wisconsin Abstract As new generations of electronic products emerge they often surpass the capability

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 7 a a) Lead in high melting temperature type solders (i.e. lead-based alloys containing

More information

S/C Packaging Assembly Challenges Using Organic Substrate Technology

S/C Packaging Assembly Challenges Using Organic Substrate Technology S/C Packaging Assembly Challenges Using Organic Substrate Technology Presented by Bernd Appelt ASE Group Nov. 17, 2009 Overview The Packaging Challenge Chip Substrate Interactions Stiffeners for FC-BGA

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

1 Thin-film applications to microelectronic technology

1 Thin-film applications to microelectronic technology 1 Thin-film applications to microelectronic technology 1.1 Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies.

More information

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering WF637 A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering Low viscosity and high tacking power stabilize ball holding force and ensures excellent solder wettability Easy

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

TGV and Integrated Electronics

TGV and Integrated Electronics TGV and Integrated Electronics Shin Takahashi ASAHI GLASS CO., LTD. 1 Ambient Intelligence Green Energy/Environment Smart Factory Smart Mobility Smart Mobile Devices Bio/Medical Security/Biometrics 2 Glass

More information

ALTERNATIVES TO SOLDER IN INTERCONNECT, PACKAGING, AND ASSEMBLY

ALTERNATIVES TO SOLDER IN INTERCONNECT, PACKAGING, AND ASSEMBLY ALTERNATIVES TO SOLDER IN INTERCONNECT, PACKAGING, AND ASSEMBLY Herbert J. Neuhaus, Ph.D., and Charles E. Bauer, Ph.D. TechLead Corporation Portland, OR, USA herb.neuhaus@techleadcorp.com ABSTRACT Solder

More information

DITF ToolKit 1. Standard Substrate Sizes (selected at the factory for optimum process)

DITF ToolKit 1. Standard Substrate Sizes (selected at the factory for optimum process) DITF ToolKit 1 DITF Toolkit Substrates Common Substrate Materials Alumina (99.5% min) єr = 9.9 Tan d = 1.5 x10-4 Aluminum Nitride (K170) єr = 8.9 Tan d = 2.0 x10-3 Beryllia (99.5%) єr = 6.7 Tan d = 3.0

More information

Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages

Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages by Ming-Che Hsieh STATS ChipPAC Taiwan Co. Ltd. Copyright 2013. Reprinted from 2013 International Microsystems,

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

The Effect of Fillers in Nonconductive Adhesive on the Reliability of Chip-on-Glass Bonding with Sn/Cu Bumps

The Effect of Fillers in Nonconductive Adhesive on the Reliability of Chip-on-Glass Bonding with Sn/Cu Bumps Materials Transactions, Vol. 52, No. 11 (2011) pp. 2106 to 2110 #2011 The Japan Institute of Metals The Effect of Fillers in Nonconductive Adhesive on the Reliability of Chip-on-Glass Bonding with Sn/Cu

More information

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications M. Gonzalez 1, B. Vandevelde 1, Jan Vanfleteren 2 and D. Manessis 3 1 IMEC, Kapeldreef 75, 3001, Leuven,

More information

Motorola MPA1016FN FPGA

Motorola MPA1016FN FPGA Construction Analysis Motorola MPA1016FN FPGA Report Number: SCA 9711-561 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax: 602-515-9781

More information

II. A. Basic Concept of Package.

II. A. Basic Concept of Package. Wafer Level Package for Image Sensor Module Won Kyu Jeung, Chang Hyun Lim, Jingli Yuan, Seung Wook Park Samsung Electro-Mechanics Co., LTD 314, Maetan3-Dong, Yeongtong-Gu, Suwon, Gyunggi-Do, Korea 440-743

More information

Material based challenge and study of 2.1, 2.5 and 3D integration

Material based challenge and study of 2.1, 2.5 and 3D integration 1 Material based challenge and study of 2.1, 2.5 and 3D integration Toshihisa Nonaka Packaging Solution Center R&D Headquarters Hitachi Chemical Co., Ltd., Sep. 8, 2016 Hitachi Chemical Co., Ltd. 2010.

More information

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA)

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Seung Wook Yoon, Yaojian Lin and Pandi C. Marimuthu STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442 E-mail

More information

Bare Die Assembly on Silicon Interposer at Room Temperature

Bare Die Assembly on Silicon Interposer at Room Temperature Minapad 2014, May 21 22th, Grenoble; France Bare Die Assembly on Silicon Interposer at Room Temperature W. Ben Naceur, F. Marion, F. Berger, A. Gueugnot, D. Henry CEA LETI, MINATEC 17, rue des Martyrs

More information

Semiconductor IC Packaging Technology Challenges: The Next Five Years

Semiconductor IC Packaging Technology Challenges: The Next Five Years SPAY025 May 2006 White Paper Mario A. Bolanos, Director Semiconductor Group Packaging Technology Development, Texas Instruments In the era of communications and entertainment, growth of consumer electronics

More information

Today s challenges. Introduction

Today s challenges. Introduction Today s challenges Due to the high potential of miniaturization and integration, with regard to the innovation degree, quality and sustainability requirements, the 21 st century looks forward to the integration

More information

Figure 1 Embedded Active and Passive Module (EMAP) Cross-section Schematic

Figure 1 Embedded Active and Passive Module (EMAP) Cross-section Schematic Super High Density Two Metal Layer Ultra-Thin Organic Substrates for Next Generation System-On-Package (SOP), SIP and Ultra-Fine Pitch Flip-Chip Packages Venky Sundaram, Hunter Chan, Fuhan Liu, and Rao

More information

Analog Devices ADSP KS-160 SHARC Digital Signal Processor

Analog Devices ADSP KS-160 SHARC Digital Signal Processor Construction Analysis Analog Devices ADSP-21062-KS-160 SHARC Digital Signal Processor Report Number: SCA 9712-575 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale,

More information

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect. Metallization and Interconnects

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect. Metallization and Interconnects FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect Metallization and Interconnects Learning objectives Metal heros Significance of selecting right metallization systems and examples

More information

Technology Drivers for Plasma Prior to Wire Bonding

Technology Drivers for Plasma Prior to Wire Bonding Technology Drivers for Plasma Prior to Wire Bonding James D. Getty Nordson MARCH Concord, CA, USA info@nordsonmarch.com Technology Drivers for Plasma Prior to Wire Bonding Page 1 ABSTRACT Advanced packaging

More information

Rockwell R RF to IF Down Converter

Rockwell R RF to IF Down Converter Construction Analysis Rockwell R6732-13 RF to IF Down Converter Report Number: SCA 9709-552 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

FLIP CHIP CHIP ON BOARD SMT ENGINEERING OPTO PACKAGING SUPPLY CHAIN MANAGEMENT TESTING YOUR INNOVATIVE TECHNOLOGY PARTNER PRODUCTION CONCEPT

FLIP CHIP CHIP ON BOARD SMT ENGINEERING OPTO PACKAGING SUPPLY CHAIN MANAGEMENT TESTING YOUR INNOVATIVE TECHNOLOGY PARTNER PRODUCTION CONCEPT YOUR INNOVATIVE TECHNOLOGY PARTNER CHIP ON BOARD OPTO PACKAGING PROCESS DEVELOPMENT CONCEPT FLIP CHIP ENGINEERING TESTING PRODUCTION SMT SUPPLY CHAIN MANAGEMENT PROTOTYPES HIGH-PRECISION ASSEMBLY OF MICRO-

More information

Impacts of the bulk Phosphorous content of electroless Nickel layers to Solder Joint Integrity

Impacts of the bulk Phosphorous content of electroless Nickel layers to Solder Joint Integrity Impacts of the bulk Phosphorous content of electroless Nickel layers to Solder Joint Integrity Sven Lamprecht, Kuldip Johal, Dr. H.-J. Schreier, Hugh Roberts Atotech Deutschland GmbH Atotech USA, Berlin

More information

Motorola MC68360EM25VC Communication Controller

Motorola MC68360EM25VC Communication Controller Construction Analysis EM25VC Communication Controller Report Number: SCA 9711-562 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax:

More information

Flip Chip Bump Electromigration Reliability: A comparison of Cu Pillar, High Pb, SnAg, and SnPb Bump Structures

Flip Chip Bump Electromigration Reliability: A comparison of Cu Pillar, High Pb, SnAg, and SnPb Bump Structures Flip Chip Bump Electromigration Reliability: A comparison of Cu Pillar,,, and SnPb Bump Structures Ahmer Syed, Karthikeyan Dhandapani, Lou Nicholls, Robert Moody, CJ Berry, and Robert Darveaux Amkor Technology

More information

Development of an Low Cost Wafer Level Flip Chip Assembly Process for High Brightness LEDs Using the AuSn Metallurgy

Development of an Low Cost Wafer Level Flip Chip Assembly Process for High Brightness LEDs Using the AuSn Metallurgy Development of an Low Cost Wafer Level Flip Chip Assembly Process for High Brightness LEDs Using the AuSn Metallurgy Gordon Elger, Rafael Jordan, Maria v. Suchodoletz and Hermann Oppermann Fraunhofer Institute

More information

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY B. Rogers, C. Scanlan, and T. Olson Deca Technologies, Inc. Tempe, AZ USA boyd.rogers@decatechnologies.com ABSTRACT Fan-Out Wafer-Level Packaging

More information

IPC -7095C Design and Assembly Process Implementation For BGAs

IPC -7095C Design and Assembly Process Implementation For BGAs IPC -7095C Design and Assembly Process Implementation For BGAs 1 Overview With the introduction of BGA components, things had to change: New design New assembly process New repair process New inspection

More information

Flip chip bumping technology Status and update

Flip chip bumping technology Status and update Nuclear Instruments and Methods in Physics Research A 565 (2006) 290 295 www.elsevier.com/locate/nima Flip chip bumping technology Status and update M. Juergen Wolf, Gunter Engelmann, Lothar Dietrich,

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Embedded Passives..con0nued

Embedded Passives..con0nued Embedded Passives..con0nued Why Embedded Passives? Improves the packaging efficiency System-on-Package (SOP); SLIM integration Reducing size Eliminating substrate assembly Minimizing solder joint failure

More information

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate JAXA 25 rd Microelectronics Workshop Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate November 2, 2012 Yoshinori Ejiri

More information

Lead Free Soldering Technology

Lead Free Soldering Technology Lead Free Soldering Technology Chung-Ang University Young-Eui Shin Trend of Package Small, Light, High performance High speed, Large capacity High integrity, High density Comparison of package size 45mm

More information

Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics

Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics Michael Girardi, Daric Laughlin, Philip Abel, Steve Goldammer, John Smoot NNSA s Kansas City Plant managed by Honeywell

More information

Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications

Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications Authors: Jeb. H Flemming, Kevin Dunn, James Gouker, Carrie Schmidt, Roger Cook ABSTRACT Historically, while glasses have many

More information

TECHNICAL DATA SHEET 1 P a g e Revised January 9, 2014

TECHNICAL DATA SHEET 1 P a g e Revised January 9, 2014 1 P age Revised January 9, 2014 TAIYO PSR-4000 CC01SE (UL Name: PSR-4000JV / CA-40JV) LIQUID PHOTOIMAGEABLE CURTAIN COAT SOLDER MASK Curtain Coat Application Aqueous Developing Solder Mask RoHS Compliant

More information

Lead Free Solder for Flip Chip

Lead Free Solder for Flip Chip Lead Free Solder for Flip Chip Zhenwei Hou & R. Wayne Johnson Laboratory for Electronics Assembly & Packaging Auburn University 162 Broun Hall, ECE Dept. Auburn, AL 36489 USA 334-844-1880 johnson@eng.auburn.edu

More information

Reliability of Lead-Free Solder Connections for Area-Array Packages

Reliability of Lead-Free Solder Connections for Area-Array Packages Presented at IPC SMEMA Council APEX SM 2001 For additional information, please email marketing@amkor.com Reliability of Lead-Free Solder Connections for Area-Array Packages Ahmer Syed Amkor Technology,

More information

White Paper 0.3mm Pitch Chip Scale Packages: Changes and Challenges

White Paper 0.3mm Pitch Chip Scale Packages: Changes and Challenges White Paper 0.3mm Pitch Chip Scale Packages: Changes and Challenges 0.3mm Pitch Chip Scale Packages: Changes and Challenges Industry Trend The movement to 0.3mm pitch in chip scale packages (CSPs) can

More information

Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability

Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability The 22nd Microelectronics Work Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability Key Points (1) High Speed Solder Ball Shear Test (2) Relationship between Surface

More information

Fine Pitch P4 Probe Cards

Fine Pitch P4 Probe Cards Fine Pitch P4 Probe Cards Photolithographic Pattern Plating Process June 1998 By Toshi Ishii, Hide Yoshida Contents What is a P4 probe card? Specification Some test results Tip cleaning RF performance

More information

Oki M A-60J 16Mbit DRAM (EDO)

Oki M A-60J 16Mbit DRAM (EDO) Construction Analysis Oki M5117805A-60J 16Mbit DRAM (EDO) Report Number: SCA 9707-545 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES.

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. SESSION 14 MATERIALS AND PROCESSES FOR ADVANCED PACKAGING UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. Eric Schulte 1, Gilbert Lecarpentier 2 SETNA Corporation

More information

Metallization of MID Dec 2 010

Metallization of MID Dec 2 010 Metallization of MID Dec 2010 Agenda Introduction to Dow Electronic Materials MID Applications & Advantages Dow MID Metallization Processes Plating Equipment Summary Dow Business Structure Where Dow Electronic

More information

Characterization of Coined Solder Bumps on PCB Pads

Characterization of Coined Solder Bumps on PCB Pads Characterization of Coined Solder Bumps on PCB Pads Jae-Woong Nah, Kyung W. Paik, Won-Hoe Kim*, and Ki-Rok Hur** Department of Materials Sci. & Eng., Korea Advanced Institute of Science and Technology

More information

Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications

Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications Ed Elce, Chris Apanius, Jeff Krotine, Jim Sperk, Andrew Bell, Rob Shick* Sue Bidstrup-Allen, Paul Kohl Takashi Hirano,

More information

3D Stacking of Chips with Electrical and Microfluidic I/O Interconnects

3D Stacking of Chips with Electrical and Microfluidic I/O Interconnects 3D Stacking of Chips with Electrical and Microfluidic I/O Interconnects Calvin R. King, Jr., Deepak Sekar, Muhannad S. Bakir, Bing Dang #, Joel Pikarsky, and James D. Meindl Georgia Institute of Technology,

More information

1.3.2 Nanotechnology Nanoporosity Deposition Methods Dissolution Methods

1.3.2 Nanotechnology Nanoporosity Deposition Methods Dissolution Methods Table of Contents 1. Metal Finishing 1 1.1 Introduction 1 1.1.1 Description of Industrial Activity Covered 1 1.1.2 Environmental and Legislative Background 3 1.1.3 Emerging Technology or Research? 4 1.2

More information

Dallas Semicoductor DS80C320 Microcontroller

Dallas Semicoductor DS80C320 Microcontroller Construction Analysis Dallas Semicoductor DS80C320 Microcontroller Report Number: SCA 9702-525 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone:

More information

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Overview of CMP for TSV Applications Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Outline TSV s and the Role of CMP TSV Pattern and Fill TSV Reveal (non-selective)

More information

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Challenges and Solutions for Cost Effective Next Generation Advanced Packaging H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Outline Next Generation Package Requirements ewlb (Fan-Out Wafer

More information

NKK NR4645LQF Bit RISC Microprocessor

NKK NR4645LQF Bit RISC Microprocessor Construction Analysis NKK NR4645LQF-133 64-Bit RISC Microprocessor Report Number: SCA 9707-547 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9870

More information

Plasma for Underfill Process in Flip Chip Packaging

Plasma for Underfill Process in Flip Chip Packaging Plasma for Underfill Process in Flip Chip Packaging Jack Zhao and James D. Getty Nordson MARCH 2470-A Bates Avenue Concord, California 94520-1294 USA Published by Nordson MARCH www.nordsonmarch.com 2015

More information

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Revision 0 2006 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the

More information

NEW DEVELOPMENTS OF DIRECT BONDING ON NON-PRECIOUS METAL SURFACES BY PRESSURE SILVER SINTERING

NEW DEVELOPMENTS OF DIRECT BONDING ON NON-PRECIOUS METAL SURFACES BY PRESSURE SILVER SINTERING NEW DEVELOPMENTS OF DIRECT BONDING ON NON-PRECIOUS METAL SURFACES BY PRESSURE SILVER SINTERING IMAPS-UK Die Attach Workshop 22 November 2018 MTC, Coventry Ly May Chew, Wolfgang Schmitt Heraeus Electronics

More information

PROCESSING AND RELIABILITY OF LOW-SILVER-ALLOYS

PROCESSING AND RELIABILITY OF LOW-SILVER-ALLOYS PROCESSING AND RELIABILITY OF LOW-SILVER-ALLOYS Mathias Nowottnick and Andrej Novikov University of Rostock Rostock, Germany mathias.nowottnick@uni-rostock.de Joerg Trodler W.C. Heraeus Hanau, Germany

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Evaluation of Pb-free BGA Solder Joint Reliability on Ni-based Surface Finishes using Alternative Shear and Pull Metrologies

Evaluation of Pb-free BGA Solder Joint Reliability on Ni-based Surface Finishes using Alternative Shear and Pull Metrologies Evaluation of Pb-free BGA Solder Joint Reliability on Ni-based Surface Finishes using Alternative Shear and Pull Metrologies Kuldip Johal and Hugh Roberts Atotech USA Inc., Rock Hill, SC Sven Lamprecht,

More information

CX Thin Fil s. Resistors Attenuators Thin-Film Products Thin-Film Services. ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant

CX Thin Fil s. Resistors Attenuators Thin-Film Products Thin-Film Services.   ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant CX Thin Fil s Resistors Attenuators Thin-Film Products Thin-Film Services www.cxthinfilms.com ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant www.cxthinfilms.com sales@cxthinfilms.com +1 (401) 461-5500

More information

Hi-performance S3X58-M406

Hi-performance S3X58-M406 www.ko-ki.co.jp Ver. 42004.5 Prepared on Mar. 7, 2005 Koki no-clean LEAD FREE solder paste Hi-performance Product information 0.4mm pitch 0.3mm diameter This Product Information contains product performance

More information

Challenges for Embedded Device Technologies for Package Level Integration

Challenges for Embedded Device Technologies for Package Level Integration Challenges for Embedded Device Technologies for Package Level Integration Kevin Cannon, Steve Riches Tribus-D Ltd Guangbin Dou, Andrew Holmes Imperial College London Embedded Die Technology IMAPS-UK/NMI

More information

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes Jason Chou and Sze Pei Lim Indium Corporation Agenda Company introduction Semiconductor assembly roadmap challenges Fine

More information