Aspects on failure modes and reliability assessment in automotive power microelectronics Gerald Dallmann

Size: px
Start display at page:

Download "Aspects on failure modes and reliability assessment in automotive power microelectronics Gerald Dallmann"

Transcription

1 Aspects on failure modes and reliability assessment in automotive power microelectronics Gerald Dallmann Division Manager, SGS INSTITUT FRESENIUS GmbH

2 Outline Main field failure mechanisms from a perspective of a service provider Reliability assessment and limitations of current qualification procedure Conclusions and recommendations

3 Failure modes in power devices

4 Market trend per device type Downturn in 2012 due to PV Current stable growth due to: E mobility (drives, steering ) Industry automation (I 4.0) Chargers, power supplies (IoT) Highest market share for IGBTs Source: Yole Developpement

5 Silicon power devices. IGBTs Despite the fact that IGBTs are just switches, they are complex and sensitive products with much more failure modes than logic IC s or mechanical switches which are replaced by IGTBs. Besides electrical issues (overstress: V, I, P, T, punch through, latch up, thermal runaway, dynamic issues L*dI/dt, ) and systematic system issues (cooling, parasitics, system oscillations ) there are many technology issues and process deviations which can t be simulated. Source: Infineon A. Benmansour et al. Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions. Microelectronics Reliability, Elsevier, 2007, vol.47, pp Oscillation issues due to high stray inductance Source: Infineon

6 Example for failure mode root cause finding See: FUJI IGBT MODULE APPLICATIN MANUAL

7 ESD/EOS ESD (electrostatic discharge) is caused by storage or handling issues and leads to very small burn marks in the silicon. Can be caused at each station in the supply chain. EOS (electrostatic overstress) is caused by U, I or P stress outside the SOA (safe operating area) and leads to severe thermal chip/ module damage. Caused mostly at final application or test at application conditions. The differentiation is fuzzy! ESD of a Power MOSFET Top down view ESD vs. EOS EOS of a freewheeling diode Trench Au X-section Contact Si chip Backside solder

8 Examples of main Failure mechanisms. Particles and patterning issues. b a Failure network analysis OBIRCH Failure localization Au Failure hypothesis Poly Si residue leading to a tiny short Poly-Si plate to substrate contact. Main root cause for current field failures. In-film particles and patterning issues lead Poly-Si and Metal residues and can result in unstable shorts reaching the final customer. FA requires analysis of signal paths and networks to identify a potential short.

9 Gate Oxide Defects Gate oxide area GOX defect at the boarder to the source/drain region. Electrical field stress? Au Plasma damage? Local thinning? Localization by LIT Light microscopy after top layer removal MIM Capacitor defect after Poly 2 removal. Wafer process induced electrostatic damage. FA can pinpoint to the location of the defect but the process root cause has to be found by other methods: Correlation to wafer process deviations, tools, plasma etch or other tool issues Reliability monitoring data Cooperation with the wafer manufacturer is required (bath contamination, charging)

10 BE Failure root cause: Bond pad surface and bond process Si wafers are manufactured in FAB, tested, stored, shipped At packaging sites wafers are sawn into chips. Chips are soldered, cleaned, bonded, tested. Power devices require thick Al wires (300µm), bonded to 5µm Al layer on the Chip. This leads to very narrow process windows (no sticking vs. mechanical damage of the chip). Wafer FAB process, storage, transport, cleaning after sawing and soldering and bond process issues are typical root causes for power device failures. They lead finally to a burned chip, indicating (misleading) to EOS as root cause. Al Bond wire 300µm Ø SEM image of a cross section Al wire bond to a Chip with Al metal layer Al layer of chip metallization 5µm thick

11 Failure analysis of power devices Root cause analysis by failure localization and cross sectioning Result: EOS (Electrostatic Overstress), typically related to the application/ customer Cracks due to short intense heating pulse Molten Si Chip and Solder Bond wire Si chip Burn mark close to a bond wire Cross section showing the molten Si chip and cracks in the chip Cu from DCB Solder layer

12 Failure analysis of power devices Root cause analysis: EOS??? Cu layer Ceramic layer Crack seen also in the reference chip Crack in the ceramic layer of the DCB

13 Failure analysis: Bond process (tool) The faulty device (leakage) has to be de-capsulated (incl. silicone gel!) and analyzed for failure localization. Light Microscopy Image of a power device Localization of the failure by LIT (Look-in Thermography)

14 Failure analysis: Bond process (impurities, tool) The bond wire (300µm) Al has been fully pressed through the Al of the Chip (5µm thick). The bond force was too high, required by surface impurities of the Chip. Al bond wire Al Chip Bond tool pressed onto Chip surface! Si Chip SEM of the bond SEM of the cross section

15 Failure analysis: Bond process (impurities, tool) Same Chip type with a burned fail, leading to molten Al and SiO2 spheres. The burning position slightly outside the bond could be occasionally, leading to (wrong) EOS as failure hypothesis. SEM of the bond SEM/EDX analysis of the molten area

16 Failure root causes: bond surface contamination Al bond pad analysis by AES (Auger Electron Spectroscopy), left, and TOF-SIMS (time-off-flight Secondary Ion Mass Spectroscopy), right Pad contamination by residues of F, typical for plasma etch processes Al C O F Si 24at% 33at% 22at% 12at% 9at%

17 Analysis of surface cleanliness by TOF-SIMS time-of-flight Secondary Ion Mass Spectroscopy Analysis beam, low dose surface probing + Second (primary) beam, high dose, Cs, O 2, for depth profiling Parallel detection of Masses Sequential sputter erosion

18 High temp solder issues Au/Sn based solders are used for high temp applications (lightening) The temperature stability, void formation and barrier stability depends on a precise control of process and material specifications FA requires in-depth knowledge on material properties Ge carrier chip with Au/Sn solder on an Ni plated base. Voids lead to thermal coupling issues.

19 High temp solder issues Phase formation in these systems is complex. Au Sn Ni Au Ge Ni Phases can change during ageing even at low temperatures! FA requires analysis on process windows and ref. samples. H.G.Song et al., Au-Ni-Sn Intermetallic Phase Relationships, JoEM, vol30, p.409

20 New Material combinations M. Paulasto-Kröckel, CAM Workshop Halle, April 2015 New material combinations (Cu -Al, Au based high temperature solders, Ag, metal barrier layers like NiV) require in-depth understanding of material properties and failure mechanisms. A phase diagram is valid for steady state conditions! Phases can change even at room temperature. There are no phase diagrams for 4 or more elements!

21 Reliability Assessment

22 Common quality understanding. Some myths. My product is qualified, so I m safe Qualification is done typically for a new technology and one lead product (or very few products), not for every product. Qualification doesn t consider every application condition, mostly just T and V. Real application happens in systems (voltage spikes, parasitic s like inductances, capacitances, contact or screening issues, humidity, mobile ions). Qualification is based on acceleration factors for ageing mechanisms (e.g. device degradation). Process issues (surface contamination, particles) are not included in these models. Qualification is done with 77 parts for some tests. It is just a catastrophe check, not capable to show low ppm failure rate. Qualification doesn t consider excursions. They are assessed by engineering (manual) judgment. Power devices are often used outside specification (e.g. for unclamped inductive load). Real quality level can be assessed after qualification by analysis of test failures and field returns. The technology was not changed over years and stays as it was qualified Technology qualification is done when the technology is mostly ready. The yield is not yet at the final (mature) level. Yield increase work requires process changes. Electrical tests are introduced to catch bad/weak chips during qualification. Test costs are huge. Test reduction is required for cost savings. Quality has to be maintained all the time. Each manufacturer has a severe pressure for cost reduction. Materials and suppliers are changed. Quality impact is assessed by engineering judgement or some requalification tests. Technology has to be changed. Talk to your supplier, without focus on potential claims or issues!

23 Reliability requirements for automotive applications Zero ppm failure rate Typical acceptable failure rate for automotive is today <10ppm (for traction business <200ppm) This leads to a typical number of fails of 1 to 2 cases per product and customer per year. Each case could be unique. Higher losses with repeated fails lead to a Task Force operation mode. Zero Incident No excursions, no process adjustments for entire shipment time frame. Not realistic (changes of equipment base, suppliers, production excursions).

24 Limitations of current qualification and quality monitoring procedure The main technology and product qualification procedure is still following the AEC Q100 procedure Components meeting these specifications are suitable for use in the harsh automotive environment without additional component level qualification testing. Issues Very limited number of tests and samples (~500 in BE) Fail rate assessment at end of life requires proven acceleration models for Q100 qualification procedure! No models for new packaging types! Field fails on qualified products To prove 2ppm failure rate about 1 to 2 million devices should be tested- at each test! Degradation acceleration and models are required.

25 Strategies to prove and improve reliability at low ppm level. Production part. Quality has to be produced. It can not be achieved by testing! Find a robust system design Application conditions, mission profile Process window lots (metal barriers, solder process, contamination) FMEAs. Check if the failure modes happen by FA. Prove the main critical system and device properties and materials by analysis in the concept phase. Requires FA, also after stress application.

26 Strategies to prove and improve reliability at low ppm level. Production part. Quality has to be produced. It can not be achieved by testing! Reduce fail root causes in production Reduce defects as one of the main failure root causes (particles and patterning issues). FA to find the mechanisms of defects and address them. Inline inspection by bright field pattern comparison. Current focus: wafer bevel and backside inspection. Reduce excursions (tool malfunction, misprocessing, CL violation) Run stable and centered processes (SPC, cp/cpk) Check main and critical device properties by FA on a regular base. CA (construction analysis): measure the entire geometry (gate, contacts, metal, pad, pad opening, passivation, ). Check with Trendcharts. Very valuable also for foundry customers (check critical dimensions). Feedback of FA of field returns to improve production quality.

27 Strategies to prove and improve reliability at low ppm level. Test part. Extend SQ test (samples, time, conditions) to increase the chance of a fail and combine relevant stress conditions Overtesting/ test with tighter SPECs (leakage currents, UIL= unclamped inductive load for power MOSFETs) Burn-in. Stress of the devices (1st year of application) before test. FA of electrical parameter and functional test fails. Every fail mechanism will still occur also in the field! Analysis of field returns by FA and feedback to process. Reliability monitoring. Test of critical parameters on production lots. FA of detected failures. Analyse hardware after SQ tests by FA. Detect weaknesses.

28 Strategies to prove and improve reliability at low ppm level. Test part. Robustness validation see Change from AEC Q100 test based approach to a predictive approach with failure mode assessment and degradation models Key is the knowledge of failure mechanisms and degradation models Intensive FA required to Find the mechanisms and degradation (based on stress tests) Analyse EoL failures

29 Strategies to prove and improve reliability at low ppm level. Test part. Robustness validation procedure requires to find failure modes first to define ageing models. They can be defined only by FA! Example GOX hard BD: surface roughness contamination ESD lattice defects charge trapping local GOX thinning variation of oxide thickness mobile ions dielectric defectivity See:

30 Modelling for Verification of High Reliability Acknowledgement: The project eramp is co-funded by grants from Germany, Austria, Slovakia and the ENIAC Joint Undertaking. It is coordinated by Infineon Technologies Dresden GmbH

31 Increasing Requirements for Verification of High Reliability Zero failures cannot be verified statistically with finite sample size Consideration of reliability models required Risk of insufficient testing Required Sample Size Required Sample Size 2 Extreme Cases Case 1: no knowledge / assumption Case 2: acceleration & ageing known Reliability target 1 R(t) = 10 ppm Confidence level 90 % Acceleration factor unknown, assumed as 1 (i.e., customer equivalent testing) Use of Prior Knowledge Lifetime behaviour No assumption Weibull with shape 3 (Ageing) Statistical sampling model Binomial WeiBayes Required samples for verification > Partners: Infineon, JOANNEUM RESEARCH, CIS (consulting in industrial statistics) 15

32 SGS INSTITUT FRESENIUS

33 AT A GLANCE

34 INSTITUT FRESENIUS GmbH Part of SGS CRS Microelectronics & Special Analytics Physical and chemical analytical techniques Materialography, microscopy Scanning electron microscopy (SEM) Atomic force microscopy (AFM) Transmission electron microscopy (TEM) Computer Tomography CT XPS Quantum 2000 Quantera II TOF-SIMS Ion TOF 5 X-ray photo electron spectroscopy (XPS) Auger electron spectroscopy (AES/SAM) Electron probe micro analysis (EPMA WDX)) Secondary ion mass spectrometry (SIMS) Spreading resistance profiling (SRP) AES Phi 670 D-SIMS Cameca ims 7f Infrared spectroscopy (FTIR, KBr-press technique) X-ray diffraction (XRD) Thermal analysis (DMA, DSC, DTA/TG) Gas-chromatography mass spectrometry (GC-MS, TDS, Pyrolysis) High-performance liquid chromatography(hplc) Ion chromatography (IC) Element analysis (ICP OES)

35 Summary In case of power devices the customer can not find the root cause in front end and back end. It needs a tight and open cooperation with the manufacturer. Financial claims inhibit every cooperation! In-depth failure analysis is required to detect and understand failure mechanisms and customer returns. Every known method for chip qualification needs expert know how for failure modes and degradation models to predict a failure rate. This has to be delivered by stress tests and following FA. FA is key to understand your materials, processes and products!

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C EPRC 12 Project Proposal Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C 15 th August 2012 Page 1 Motivation Increased requirements of high power semiconductor device

More information

Passive components : 5 years failure analysis feedback From all markets

Passive components : 5 years failure analysis feedback From all markets 2 nd SPCD 12-14 October 2016 Passive components : 5 years failure analysis feedback From all markets Eric ZAIA (Material Engineer) Béatrice MOREAU (Passive components & PCB dpt. Manager) SUMMARY 1 Introduction

More information

Failure Modes in Wire bonded and Flip Chip Packages

Failure Modes in Wire bonded and Flip Chip Packages Failure Modes in Wire bonded and Flip Chip Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract The growth of portable and wireless products is driving the miniaturization

More information

Electrical Overstress Course

Electrical Overstress Course EOS Training Course Dr. Lim Soo King Dip Sc (Merit); B Sc (Hons); Dip Mgt (Dist) M Sc; PhD; MIPM Associate Professor Universiti Tunku Abdul Rahman 31 Jul 06. 1 Objectives of the Course Understand the phenomena

More information

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste SEMIKRON Pty Ltd 8/8 Garden Rd Clayton Melbourne 3168 VIC Australia Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste For some years now, the elimination of bond

More information

Materials Characterization for Stress Management

Materials Characterization for Stress Management Materials Characterization for Stress Management Ehrenfried Zschech, Fraunhofer IZFP Dresden, Germany Workshop on Stress Management for 3D ICs using TSVs San Francisco/CA, July 13, 2010 Outline Stress

More information

Copper Wire Packaging Reliability for Automotive and High Voltage

Copper Wire Packaging Reliability for Automotive and High Voltage Copper Wire Packaging Reliability for Automotive and High Voltage Tu Anh Tran AMPG Package Technology Manager Aug.11.2015 TM External Use Agenda New Automotive Environments Wire Bond Interconnect Selection

More information

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes Jason Chou and Sze Pei Lim Indium Corporation Agenda Company introduction Semiconductor assembly roadmap challenges Fine

More information

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Joohan Lee, Joseph J. Griffiths, and James Cordingley GSI Group Inc. 60 Fordham Rd. Wilmington, MA 01887 jlee@gsig.com

More information

p. 57 p. 89 p. 97 p. 119

p. 57 p. 89 p. 97 p. 119 Preface Program Committee Members Transistor Physics History John Bardeen and Transistor Physics p. 3 Challenges p. xiii p. xv Technology in the Internet Era p. 33 Metrology Needs and Challenges for the

More information

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents UNIT I INTRODUCTION: Introduction to IC Technology MOS, PMOS, NMOS, CMOS & BiCMOS technologies. BASIC ELECTRICAL PROPERTIES : Basic Electrical

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

Silicon Wafer Processing PAKAGING AND TEST

Silicon Wafer Processing PAKAGING AND TEST Silicon Wafer Processing PAKAGING AND TEST Parametrical test using test structures regularly distributed in the wafer Wafer die test marking defective dies dies separation die fixing (not marked as defective)

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Final Year Project Proposal 1

Final Year Project Proposal 1 Final Year Project Proposal 1 Mechanical testing for high temperature polymers Mr Eric Phua Jian Rong (JRPhua@ntu.edu.sg) In offshore subsea drilling, different types of microelectronics devices and sensors

More information

Packaging Technologies for SiC Power Modules

Packaging Technologies for SiC Power Modules Packaging Technologies for SiC Power Modules Masafumi Horio Yuji Iizuka Yoshinari Ikeda ABSTRACT Wide bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN) are attracting attention

More information

1 Thin-film applications to microelectronic technology

1 Thin-film applications to microelectronic technology 1 Thin-film applications to microelectronic technology 1.1 Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies.

More information

Quality requirements for wafers, cells and PV modules

Quality requirements for wafers, cells and PV modules Outdoor test-site PI Berlin Quality requirements for wafers, cells and PV modules Intersolar 2008 in Munich, 12th of June 2008 Stefan Krauter, Paul Grunow, Sven Lehmann PI Photovoltaik-Institut Berlin

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

WorkShop Audace. INSA ROUEN 8 juin 2012

WorkShop Audace. INSA ROUEN 8 juin 2012 WorkShop Audace INSA ROUEN 8 juin 2012 Global Standards for the Microelectronics Industry JEDEC standards for product level qualification Christian Gautier Content JEDEC overview Environmental reliability

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Long-term reliability of SiC devices. Power and Hybrid

Long-term reliability of SiC devices. Power and Hybrid Long-term reliability of SiC devices Power and Hybrid Rob Coleman Business Development and Applications Manager TT electronics, Power and Hybrid Roger Tall Product Specialist Charcroft Electronics Ltd

More information

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS Novel Material for Improved Quality of RF-PA in Base-Station Applications Co-Authored by Nokia Research Center and Freescale Semiconductor Presented at 10 th International Workshop on THERMal INvestigations

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

PRELIMINARY. HTHA (Z1-Foil)

PRELIMINARY. HTHA (Z1-Foil) Ultra High Precision Z1-Foil Technology Chip Resistor for Hybrid Circuits with Aluminum Wire Bonding for High Temperature Applications up to +240 C, Long Term Stability of 0.05%, TCR to ± 1ppm/ C INTRODUCTION

More information

HTHA (Z1-Foil) Vishay Foil Resistors

HTHA (Z1-Foil) Vishay Foil Resistors Ultra High Precision Z1-Foil Technology Chip Resistor for Hybrid Circuits with Aluminum Wire Bonding for High Temperature Applications up to +240 C, Long Term Stability of 0.05%, TCR to ± 1ppm/ C INTRODUCTION

More information

Laser Spike Annealing for sub-20nm Logic Devices

Laser Spike Annealing for sub-20nm Logic Devices Laser Spike Annealing for sub-20nm Logic Devices Jeff Hebb, Ph.D. July 10, 2014 1 NCCAVS Junction Technology Group Semicon West Meeting July 10, 2014 Outline Introduction Pattern Loading Effects LSA Applications

More information

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices Kato et al.: High-Temperature-Resistant Interconnections (1/6) [Technical Paper] High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

More information

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG 3D-Micromac AG Symposium on Smart Integrated Systems in Chemnitz 1 1 microdice - TLS-Dicing for separation of SiC 2 microprep - for high-throughput microstructure diagnostics 3 About 3D-Micromac AG 2 microdice

More information

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES.

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. SESSION 14 MATERIALS AND PROCESSES FOR ADVANCED PACKAGING UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. Eric Schulte 1, Gilbert Lecarpentier 2 SETNA Corporation

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Abstract. Introduction

Abstract. Introduction Accelerating Silicon Carbide Power Electronics Devices into High Volume Manufacturing with Mechanical Dicing System By Meng Lee, Director, Product Marketing and Jojo Daof, Senior Process Engineer Abstract

More information

Microelectronics Reliability

Microelectronics Reliability Microelectronics Reliability 52 (2012) 2627 2631 Contents lists available at SciVerse ScienceDirect Microelectronics Reliability journal homepage: www.elsevier.com/locate/microrel Investigation on CDM

More information

The 3D Silicon Leader

The 3D Silicon Leader The 3D Silicon Leader TSV technology embedding high density capacitors for advanced 3D packaging solutions IMAPS Device Packaging Conference 2014 Catherine Bunel 2014.03.12 Outline Introduction IPDiA s

More information

Manufacturing Process

Manufacturing Process Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Manufacturing Process July 30, 2002 1 CMOS Process 2 A Modern CMOS Process gate-oxide TiSi 2 AlCu Tungsten

More information

Dallas Semicoductor DS80C320 Microcontroller

Dallas Semicoductor DS80C320 Microcontroller Construction Analysis Dallas Semicoductor DS80C320 Microcontroller Report Number: SCA 9702-525 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone:

More information

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory

PCTB PC-LAB. Power Cycling Testbench for Power Electronic Modules. Power Cycling Test Laboratory PCTB Power Cycling Testbench for Power Electronic Modules PC-LAB Power Cycling Test Laboratory Technical Information PCTB power cycling test bench alpitronic has many years of experience in developing

More information

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang

More information

Radiation Tolerant Isolation Technology

Radiation Tolerant Isolation Technology Radiation Tolerant Isolation Technology Background The following contains a brief description of isolation technologies used for radiation hardened integrated circuits. The technologies mentioned are junction

More information

Infineon FS820R08A6P2B HybridPACK Drive IGBT Module The newest HybridPACK Drive power module from Infineon with EDT2 IGBT technology

Infineon FS820R08A6P2B HybridPACK Drive IGBT Module The newest HybridPACK Drive power module from Infineon with EDT2 IGBT technology Infineon FS820R08A6P2B HybridPACK Drive IGBT Module The newest HybridPACK Drive power module from Infineon with EDT2 IGBT technology With the push from various energy-saving applications, the overall IGBT

More information

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Zaheed S. Karim 1 and Jim Martin 2 1 Advanced Interconnect Technology Ltd. 1901 Sunley Centre, 9 Wing Yin Street, Tsuen Wan, Hong

More information

National Semiconductor LM2672 Simple Switcher Voltage Regulator

National Semiconductor LM2672 Simple Switcher Voltage Regulator Construction Analysis National Semiconductor LM2672 Simple Switcher Voltage Regulator Report Number: SCA 9712-570 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale,

More information

APEC 2016 Component Level Safety Certification in Systems- IEC /UL1577. MARK CANTRELL Senior Applications Engineer

APEC 2016 Component Level Safety Certification in Systems- IEC /UL1577. MARK CANTRELL Senior Applications Engineer APEC 2016 Component Level Safety Certification in Systems- IEC60747-17/UL1577 MARK CANTRELL Senior Applications Engineer 3/20/2016 Agenda What is safety isolation Isolation Concepts Regulatory Landscape

More information

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson Alternative Methods of Yttria Deposition For Semiconductor Applications Rajan Bamola Paul Robinson Origin of Productivity Losses in Etch Process Aggressive corrosive/erosive plasma used for etch Corrosion/erosion

More information

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project leader: Dr D.N. Kouvatsos Collaborating researchers from other projects: Dr D. Davazoglou Ph.D. candidates: M. Exarchos, L. Michalas

More information

Rockwell R RF to IF Down Converter

Rockwell R RF to IF Down Converter Construction Analysis Rockwell R6732-13 RF to IF Down Converter Report Number: SCA 9709-552 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

photovoltaics services Photovoltaics Analysis, Testing, certification gain access to global PhotoVoltaic markets

photovoltaics services Photovoltaics Analysis, Testing, certification gain access to global PhotoVoltaic markets ELECTRICAL & ELECTRONICS photovoltaics services Photovoltaics Analysis, Testing, certification gain access to global PhotoVoltaic markets LOCALLY AVAILABLE worldwide Electrical and electronic product manufacturers

More information

Development of different copper seed layers with respect to the copper electroplating process

Development of different copper seed layers with respect to the copper electroplating process Microelectronic Engineering 50 (2000) 433 440 www.elsevier.nl/ locate/ mee Development of different copper seed layers with respect to the copper electroplating process a, a a b b b K. Weiss *, S. Riedel,

More information

Status USCAR project

Status USCAR project Status USCAR project Automotive strategies for EOS problem resolution OEM s: FCA US, Ford, GM Tier1 s: Bosch, Continental, Nexteer Semi s: Infineon, NXP, Renesas Status: April 2017 USCAR EOS Initiative

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

450mm Metrology and Inspection: The Current State and the Road Ahead. Rand Cottle (CNSE), Nithin Yathapu (GF), Katherine Sieg (Intel)

450mm Metrology and Inspection: The Current State and the Road Ahead. Rand Cottle (CNSE), Nithin Yathapu (GF), Katherine Sieg (Intel) 450mm Metrology and Inspection: The Current State and the Road Ahead Rand Cottle (CNSE), Nithin Yathapu (GF), Katherine Sieg (Intel) Outline Program Update Demonstration Testing Method (DTM) Equipment

More information

Lecture 030 Integrated Circuit Technology - I (5/8/03) Page 030-1

Lecture 030 Integrated Circuit Technology - I (5/8/03) Page 030-1 Lecture 030 Integrated Circuit Technology - I (5/8/03) Page 030-1 LECTURE 030 INTEGRATED CIRCUIT TECHNOLOGY - I (References [7,8]) Objective The objective of this presentation is: 1.) Illustrate integrated

More information

PRELIMINARY. FRSH Series (0603, 0805, 1206, 1506, 2010, 2512) (Z1-Foil) Vishay Foil Resistors

PRELIMINARY. FRSH Series (0603, 0805, 1206, 1506, 2010, 2512) (Z1-Foil) Vishay Foil Resistors Ultra High Precision Foil Wraparound Surface Mount Chip Resistor with Extended Pads for High Power/High Temperature Applications up to +225 C, Load Life Stability of 0.05%,TCR to ± 1ppm/ C INTRODUCTION

More information

GaAs MMIC Space Qualification

GaAs MMIC Space Qualification GaAs MMIC Space Qualification GaAs MMIC Testing TriQuint Semiconductor has advanced Lot Acceptance Testing (LAT) for High Reliability Applications of GaAs MMICs. A flowchart depicting the entire MMIC processing

More information

Transmission Kikuchi Diffraction in the Scanning Electron Microscope

Transmission Kikuchi Diffraction in the Scanning Electron Microscope Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado

More information

SIMS Analysis of Hydride in Commercially Pure Titanium

SIMS Analysis of Hydride in Commercially Pure Titanium Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 SIMS Analysis of Hydride in Commercially Pure Titanium by Hideaki NISHIKAWA *, Shigeru HAMADA ** and Katsu OHNISHI

More information

Automotive Electronic Material Challenges. Anitha Sinkfield, Delphi

Automotive Electronic Material Challenges. Anitha Sinkfield, Delphi Automotive Electronic Material Challenges Anitha Sinkfield, Delphi Automotive Electronic Material Challenges Project Update About inemi Project Participants Problem Statement Project Details Summary and

More information

CMOS FABRICATION. n WELL PROCESS

CMOS FABRICATION. n WELL PROCESS CMOS FABRICATION n WELL PROCESS Step 1: Si Substrate Start with p- type substrate p substrate Step 2: Oxidation Exposing to high-purity oxygen and hydrogen at approx. 1000 o C in oxidation furnace SiO

More information

EFFECT OF THE MICROSTRUCTURE OF Ni/Au METALLIZATION ON BONDABILITY OF FR-4 SUBSTRATE

EFFECT OF THE MICROSTRUCTURE OF Ni/Au METALLIZATION ON BONDABILITY OF FR-4 SUBSTRATE EFFECT OF THE MICROSTRUCTURE OF Ni/Au METALLIZATION ON BONDABILITY OF FR-4 SUBSTRATE Zonghe Lai and Johan Liu The Swedish Institute of Production Engineering Research (IVF) S-431 53 Mölndal, Sweden ABSTRACT

More information

Exclusive Technology Feature. Failure Analysis On Power MOSFETs With Copper Wire Bonds. Problems Of Decapsulation.

Exclusive Technology Feature. Failure Analysis On Power MOSFETs With Copper Wire Bonds. Problems Of Decapsulation. Failure Analysis On Power MOSFETs With Copper Wire Bonds by Huixian Wu, Arthur Chiang, and David Le, Vishay Siliconix, Santa Clara, Calif. ISSUE: March 2012 Copper wire bonds are being used increasingly

More information

Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique

Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique SIMTech technical reports Volume 8 Number 1 Jan - Mar 7 Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique L. M. Sim and A. C. Spowage Abstract Gray levels

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

Metallization. Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance

Metallization. Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance Metallization Interconnects Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance RC time delay Inter-Metal Dielectric -Prefer low dielectric constant to reduce capacitance

More information

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells SPREE Public Seminar 20 th February 2014 Ned Western Supervisor: Stephen Bremner Co-supervisor: Ivan Perez-Wurfl

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

Micro-Structural Observation of the Bonding Interface between Au Wire and a Platinum Electrode

Micro-Structural Observation of the Bonding Interface between Au Wire and a Platinum Electrode Micro-Structural Observation of the Bonding Interface between Au Wire and a Platinum Electrode WATANABE Hirohiko *, ISHIKAWA Sumihisa **, ITO Mototaka **, SAKO Hideki **, KIMURA Kosuke **, NAKAGAWA Yoshitsugu

More information

Metallization. Typical current density ~105 A/cm2 Wires introduce parasitic resistance and capacitance

Metallization. Typical current density ~105 A/cm2 Wires introduce parasitic resistance and capacitance Metallization Interconnects Typical current density ~105 A/cm2 Wires introduce parasitic resistance and capacitance RC time delay Inter-Metal Dielectric -Prefer low dielectric constant to reduce capacitance

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Thermal Processing Part VI, Ancillary Tools

Thermal Processing Part VI, Ancillary Tools Thermal Processing Part VI, Ancillary Tools By Christopher Henderson This month, let s move on to briefly discuss the ancillary tools for thermal processing. There are two common tools for measuring oxide

More information

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development TSV Processing and Wafer Stacking Kathy Cook and Maggie Zoberbier, 3D Business Development Outline Why 3D Integration? TSV Process Variations Lithography Process Results Stacking Technology Wafer Bonding

More information

Power Cycling Test

Power Cycling Test 390 11 Packaging and Reliability of Power Devices The SAM images of the chip-to-substrate interface show no indications of any fatigue in the chip solder interfaces, but it presents black areas in the

More information

3D-WLCSP Package Technology: Processing and Reliability Characterization

3D-WLCSP Package Technology: Processing and Reliability Characterization 3D-WLCSP Package Technology: Processing and Reliability Characterization, Paul N. Houston, Brian Lewis, Fei Xie, Ph.D., Zhaozhi Li, Ph.D.* ENGENT Inc. * Auburn University ENGENT, Inc. 2012 1 Outline Packaging

More information

IMP EPD End Point Detector

IMP EPD End Point Detector IMP EPD End Point Detector An overview of the Hiden Analytical SIMS end point detector system for ion beam etch applications IMP-EPD Presentation Topics The topics covered in the presentation include:

More information

AN IGBT Module Reliability Application Note AN April 2015 LN32483 Author: Dinesh Chamund

AN IGBT Module Reliability Application Note AN April 2015 LN32483 Author: Dinesh Chamund IGBT Module Reliability Application Note AN5945-6 April 2015 LN32483 Author: Dinesh Chamund INTRODUCTION: Dynex Semiconductor products are used in a variety of power electronics systems such as power generation

More information

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Overview of CMP for TSV Applications Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Outline TSV s and the Role of CMP TSV Pattern and Fill TSV Reveal (non-selective)

More information

MATERIAL NEEDS AND RELIABILITY CHALLENGES IN AUTOMOTIVE PACKAGING UNDER HARSH CONDITIONS

MATERIAL NEEDS AND RELIABILITY CHALLENGES IN AUTOMOTIVE PACKAGING UNDER HARSH CONDITIONS MATERIAL NEEDS AND RELIABILITY CHALLENGES IN AUTOMOTIVE PACKAGING UNDER HARSH CONDITIONS Varughese Mathew NXP Semiconductors 6501 William Cannon Drive, Austin TX, USA Automotive Innovation Driven by Electronics

More information

Trends in Device Encapsulation and Wafer Bonding

Trends in Device Encapsulation and Wafer Bonding Trends in Device Encapsulation and Wafer Bonding Roland Weinhäupl, Sales Manager, EV Group Outline Introduction Vacuum Encapsulation Metal Bonding Overview Conclusion Quick Introduction to EV Group st

More information

SEMATECH Symposium Korea 2012 Practical Analysis Techniques of Nanostructured Semiconductors by Electron Microscopy

SEMATECH Symposium Korea 2012 Practical Analysis Techniques of Nanostructured Semiconductors by Electron Microscopy SEMATECH Symposium Korea 2012 Practical Analysis Techniques of Nanostructured Semiconductors by Electron Microscopy Jun-Mo Yang, Ph.D. Measurement & Analysis Team National NanoFab Center, Korea Introduction

More information

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001) APPLICATION NOTE State of the art quality of a Ox interfacial passivation layer formed on (001) Summary A number of research efforts have been made to realize Metal-Oxide-Semiconductor Field Effect Transistors

More information

AEC WORK SHOP SESSION KNOWN GOOD DIE / MULTI-CHIP MODULE. Daniel Vanderstraeten On Semiconductor

AEC WORK SHOP SESSION KNOWN GOOD DIE / MULTI-CHIP MODULE. Daniel Vanderstraeten On Semiconductor AEC WORK SHOP SESSION KNOWN GOOD DIE / MULTI-CHIP MODULE Banjie Bautista - Integrated Silicon Solution Inc. Pamela Finer Pericom Semiconductor Tim Haifley Altera Tom Lawler Lattice Semiconductor Nick Lycoudes

More information

EE 560 FABRICATION OF MOS CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 FABRICATION OF MOS CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 FABRICATION OF MOS CIRCUITS 2 CMOS CHIP MANUFACTRING STEPS Substrate Wafer Wafer Fabrication (diffusion, oxidation, photomasking, ion implantation, thin film deposition, etc.) Finished Wafer Wafer

More information

Reliability Qualification Report

Reliability Qualification Report Reliability SUF-1000 SUF-2000 SUF-3000 SUF-4000 SUF-5000 The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions.

More information

From microelectronics down to nanotechnology.

From microelectronics down to nanotechnology. From microelectronics down to nanotechnology sami.franssila@tkk.fi Contents Lithography: scaling x- and y-dimensions MOS transistor physics Scaling oxide thickness (z-dimension) CNT transistors Conducting

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

Wire Bonding Integrity Assessment for Combined Extreme Environments

Wire Bonding Integrity Assessment for Combined Extreme Environments Wire Bonding Integrity Assessment for Combined Extreme Environments Maria Mirgkizoudi¹, Changqing Liu¹, Paul Conway¹, Steve Riches² ¹Wolfson School of Mechanical and Manufacturing Engineering, Loughborough

More information

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Abstract The recent installation of a new etch tool, the Surface

More information

FOR OFFICIAL USE ONLY

FOR OFFICIAL USE ONLY REVISION RECORD REV DESCRIPTION DATE 0 INITIAL RELEASE 10/05/10 CAUTION: ELECTROSTATIC DISCHARGE SENSITIVE PART REVISION PAGE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 INDEX REVISION 0 0 0 0 0 0 0 0 0 0

More information

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society

SLID bonding for thermal interfaces. Thermal performance. Technology for a better society SLID bonding for thermal interfaces Thermal performance Outline Background and motivation The HTPEP project Solid-Liquid Inter-Diffusion (SLID) Au-Sn SLID Cu-Sn SLID Reliability and bond integrity Alternative

More information

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University 2014 Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University Page1 Syllabus UNIT 1 Introduction to VLSI Technology: Classification of ICs, Scale of integration,

More information

VLSI Technology. By: Ajay Kumar Gautam

VLSI Technology. By: Ajay Kumar Gautam By: Ajay Kumar Gautam Introduction to VLSI Technology, Crystal Growth, Oxidation, Epitaxial Process, Diffusion Process, Ion Implantation, Lithography, Etching, Metallization, VLSI Process Integration,

More information

TSV Interposer Process Flow with IME 300mm Facilities

TSV Interposer Process Flow with IME 300mm Facilities TSV Interposer Process Flow with IME 300mm Facilities Property of Institute of Microelectronics (IME)-Singapore August 17, 2012 Outline 1. TSV interposer (TSI) cross sectional schematic TSI with BEOL,

More information

Isolation of elements

Isolation of elements 1 In an IC, devices on the same substrate must be isolated from one another so that there is no current conduction between them. Isolation uses either the junction or dielectric technique or a combination

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Quality and Reliability Report

Quality and Reliability Report Quality and Reliability Report Product Qualification MASW-007921 2mm 8-Lead Plastic Package QTR-0148 M/A-COM Technology Solutions Inc. 100 Chelmsford Street Lowell, MA 01851 Tel: (978) 656-2500 Fax: (978)

More information