Preventing Cross-Contamination Caused By Copper Diffusion

Size: px
Start display at page:

Download "Preventing Cross-Contamination Caused By Copper Diffusion"

Transcription

1 Preventing Cross-Contamination Caused By Copper Diffusion by Ted Cacouris, Senior Technologist, Novellus Systems Several key developments have fostered the transition from aluminum to copper interconnects: damascene processing to surmount the difficulties in etching copper; copper electrofill technology allowing a low-cost, bottom-up fill of damascene features; and the deployment of new materials and methods that avoid the catastrophic contamination of devices. To prevent device contamination caused by copper diffusion from interconnects into the silicon, diffusion barriers such as silicon nitride and tantalum or tantalum nitride have been created. Preventing contamination caused by copper diffusion from the inadvertent deposition of copper on wafer backsides poses a more daunting challenge. This problem has been addressed in part by more stringent requirements imposed on processing equipment and more demanding protocols imposed on manufacturing practices. The transition to copper is reminiscent of the earlier introduction of chemical-mechanical planarization into semiconductor manufacturing, whereby tools were initially segregated in separate, isolated areas for fear that slurry could contaminate the entire fab. This article investigates the issues raised by the semiconductor industry s introduction of copper into the manufacturing process and discusses methods such as equipment segregation, dedicated tools, and special wafer-handling methods that help prevent copper contamination. E f fects of copper contamination Copper diffusion in silicon devices can lead to two main types of failures: the deterioration of insulators at the interconnect levels, leading to shorts or leaky paths between conductors; and, because copper is a deep-level trap in the silicon bandgap, high standby leakage of transistors, leading to inoperability. 1 3 As illustrated in figure 1, under moderate temperatures atomic copper diffuses rapidly in silicon, having a higher diffusion coefficient in silicon than gold, silver, sodium, and iron. 4 And under moderate temperatures and bias conditions, ionic copper is a fast diffuser in Because the initial market for copper products is occupied by high-end logic devices, a trace amount of copper in unwanted places can have a severe financial impact. many dielectric materials. As a result, any trace copper that finds its way either into silicon directly or into a dielectric can have detrimental effects. Because the initial market for copper products is occupied by high-end logic devices, a trace amount of copper in unwanted places can have a severe financial impact 200 mm wafers populated with $300 logic chips represent a potential revenue of $60,000 per wafer. For this reason, manufacturing plants have been reluctant to make the transition to copper and have done so only after extensive preparations. Stringent requirements have been placed on equipment suppliers to ensure that no detectable traces of copper are present on the bevels and backsides of wafers after processing. New factory protocols have been developed to heighten awareness among production personnel and to contain copper contamination. For example, copper personnel in several U.S. fabs wear distinctively colored cleanroom gowns so that they can be prevented from C-13

2 F i g u re 1. Diagram of a test for barrier eff e c t i v e- ness using blanket films in which a thin CVD titanium nitride barr i e r, sandwiched between copper and silicon, breaks down at 600 C, leaving a pitted silicon surf a c e. entering noncopper stations and to remind them to follow copper-specific protocols. Factory layout can also be used to minimize opportunities for cross-contamination. Several facilities in Europe and Taiwan have been constructed with this precaution in mind. In order to clearly identify the wafers that have received copper processing, specially colored wafer carriers and conspicuous labels indicating the presence of copper products are used to segregate wafers made of different materials. Protocols require that once a wafer has entered a copper bay, it cannot return to a non-copper bay. Sources of copper contamination Contamination can arise from tools and equipment involved in the deposition and handling of wafers. For example, a deposition tool that coats wafers with copper films may deposit copper on the bevel of the wafer. This wafer may then be sent to a metrology tool equipped with a wafer handler that manipulates the edges of wafers processed in various areas of the fab. This wafer handler, contaminated with copper, can then cross-contaminate wafers that are destined for an etch tool. The etcher eventually becomes contaminated with copper, and the copper virus spreads quickly through the fab, accumulating in plasma process chambers, wet benches, and lithography steppers. Contamination can also spread by way of the wafer s backside. Many wafer handlers, or robots, grab or lift wafers by their backsides. Even submonolayer impurity levels of less than atoms/cm 2 on wafer backsides can result in the increasing contamination of a multipurpose handler such as that used on an inline scanning electron microscope (SEM). The damascene or dual-damascene process affords devices a certain measure of protection against copper contamination. Copper diffusion barriers such as tantalum nitride, titanium nitride, and insulating silicon nitride provide on-chip protection against copper migration from interconnect structures to neighboring dielectrics and silicon. 5 These materials are widely used in the copper damascene process architecture, effectively encapsulating every single interconnect, as illustrated in figure 2. Frontside layers and processes, however, do not sufficiently protect devices against external sources of copper that may contaminate the bevel and backside regions of the wafer. The use of dedicated metrology tools for copper processing can also help prevent cross-contamination. A common approach is to set specifications for all copper tools that limit the detectable levels of copper contamination on wafer backsides. This places the burden of cleanliness on the equipment suppliers. Critical cross-contamination in the fab Cassette/Wafer Handling Wafer handling is the most likely source of copper cross-contamination, since it is the most universal mechanism in a facility. This includes not only automation equipment, such as robots, but also plastic wafer carriers, or cassettes. If copper is left on the wafer bevel as it exits a process tool, the carrier will invariably be contaminated with c o p p e r. Great care must be taken either to limit the use of wafer carriers to a specifie d area or to switch to clean carriers once the copper is removed from the bevel. The management of this task can be logistically complex, because most semiconductor equipment is designed for cassette-to-cassette automation that is, one carrier handles both incoming and outgoing wafers. Additional costs may be incurred to clean wafer carriers more frequently than otherwise required for particle control. Shared Metrology Tools Because new metrology equipment is increasingly sophisticated and hence costly, excess capacity and redundancies are rare in this area. For this reason, the metrology area is a prime source of copper contamination. Shared metrology tools may include C-14

3 in-line SEMs for critical dimension measurements, film-thickness monitors, inline electrical testing equipment, and optical defect inspection devices. Manufacturers generally find that the acquisition of dedicated equipment for copper processing is cost-prohibitive, but they must seek to strike a balance in order to limit the danger of copper cross-contamination. Lithography Like metrology tools, lithography tools (steppers, resist tracks, develop tracks) are so expensive that they are often designed as the rate-limiting step in the throughput models of fabs. Such tools are usually qualified so that they can be used interchangeably for many mask layers, allowing the dynamic balancing of capacity and redundancy in the event of a tool failure. It is thus difficult to dedicate certain lithography tools for copper interconnect layers. Wafer Breakage No factory is immune to wafer breakage, although incidence levels have been decreased dramatically. However, protocols for cleaning tools and areas in which a wafer containing copper films has broken are crucial to preventing factorywide crosscontamination. A decontamination plan understood by all factory personnel is required for each area and tool. Such a plan must assume that the broken copper wafer has contaminated the immediate area in which the breakage occurred, mandating appropriate cleaning methods and wipedowns to remove all traces of copper contamination. For example, if a wafer breaks within a physical vapor deposition (PVD) tool, the tool must be vented and cleaned so that every surface which comes into contact with a wafer either directly or indirectly is copper-free. Unfortunately, no easy test exists for demonstrating the cleanliness of a tool short of analyzing a test wafer for copper contamination. Tools and contamination control Metrics for copper contamination are usually based on particle adders and trace copper impurities on wafer backsides. Most conservative fabs place such impurity levels at below atoms/cm 2. Measurement methods such as total x-ray fluorescence (TXRF), vapor phase desorption (VPD), and secondary ion mass spectroscopy (SIMS) can resolve contaminants approaching 10 9 atoms/cm 2. However, a wide variance in measured surface impurities is typically observed when sampling virg i n wafers. The establishment of a proper contamination threshold takes this variance into consideration. One fab in Taiwan has applied such a data-driven approach in setting contamination limits. In this facility many robotic wafer handlers are metallic by design and can therefore impart some metal contamination to the wafer through physical contact. To determine the level of copper contamination, TXRF or SIMS is used to sample and measure the backsides of product wafers from the Al(Cu) interconnect manufacturing line. Tests have shown that the equipment contaminates wafers with copper levels as high as a t o m s / c m 2, leading the facility to establish a copper contamination specification of atoms/cm 2. Copper seed deposition (typically by a PVD technique), copper bulk fill by electroplating, copper CMP, and any associated cleaning steps directly influence copper contamination. Through contact with a PVD tool, for example, a wafer backside can receive trace copper if the PVD copper module does not clamp and physically prevent copper from migrating to the back of the wafer during the deposition step. Also, any target- or shield-generated particles made of copper can find their way to the wafer pedestal or chuck, thereby leading to contamination of the wafer backside. CVD copper deposition is particularly vulnerable to this form of cross-contamination. Any trace copper precursor that does not get pumped away before the wafer is lifted from the heated pedestal results in finite levels of copper deposition on the pedestal, which in turn contaminates wafers. Postplating anneals commonly used to stabilize copper films before the CMP step are F i g u re 2. Dielectric (silicon nitride) and metal (tantalum nitride) barriers encapsulate copper in a damascene stru c t u re and pro t e c t against copper migration f rom interconnect stru c- t u res to neighb oring dielectrics and silicon. C-15

4 F i g u re 3. Bevel re g i o n of a wafer lacking b a rrier material under some areas of the copper surf a c e. F i g u re 4. TXRF measurements revealing that wafers processed with the clamshell method have a lower average level and smaller spread of copper contamination than those p rocessed with the wafer backside exposed. another typical mode of copper contamination. Any copper on the wafer lacking an underlying barrier layer to prevent copper diffusion is likely to adversely affect devices, since copper is very mobile at elevated temperatures. For example, when copper is deposited on the entire face of the wafer to maximize the usable diameter (full-face coverage), it wraps over the bevel region. Although an underlying barrier material such as tantalum nitride would otherwise prevent copper diffusion, this barrier may not wrap over the bevel region as extensively as the copper layer, leaving areas exposed to copper diffusion, as illustrated in figure 3. Etching tools that define damascene structures are also vulnerable to copper contamination. As a via is etched to open a contact to an underlying copper interconnect, the plasma etch process briefly bombards exposed copper. If care is not taken to design an etch process that does not resputter copper, copper can accumulate over time in the etch chamber, which can in turn contaminate future wafers. Similarly, dielectric tools that are used to cap copper after a copper CMP step such as silicon nitride deposition can cause contamination if care is not taken in handling wafers with exposed copper that enter this module. Controlling bevel and backside contamination Copper deposition by means of electroplating can contaminate wafers if copper-containing chemicals are not prevented from reaching a wafer s bevel and backside. These surfaces can be protected by clamping and sealing the wafer hermetically during the plating operation so that only the face of the wafer, not the bevel and backside, is exposed to the process as required. The Sabre Electrofill tool from Novellus Systems has successfully implemented such a method. By using a clamping method known as a clamshell, the tool prevents wafers from being exposed to copper-containing solutions, resulting in wafers whose backsides are free of copper. Although contaminated wafers can be cleaned by using aggressive chemical and mechanical techniques, these methods are not as effective as simply avoiding contamination (exposure) in the first place. Furthermore, such cleaning methods can be costly and risky. Figure 4, summarizing the results of a controlled experiment, demonstrates the advantage of protecting the wafer backside. In this example, some wafers were processed with the Sabre process and others with a more conventional approach involving the exposure of wafer backsides to plating solution mists. TXRF m e a s u r e m e n t s revealed that wafers processed with the tool s clamshell method have a lower average level and smaller spread of copper contamination than those processed without the clamshell C-16

5 method. Removing a high level of contamination mandates that a separate step be incorporated into the process flow to clean the wafers immediately after deposition, increasing processing costs. An extensive set of TXRF data, shown in figure 5, was collected by IBM over a period of time when more than 100,000 wafers were processed through a Sabre tool. Silicon test wafers were periodically sampled during production by loading them upside down in the tool so that the wafer face came into contact with the clamping surfaces. Then they were run through a typical process sequence. A subsequent TXRF surface analysis showed a consistent copper concentration of less than atoms/cm 2, which was similar to the copper concentration on control wafers that did not undergo the plating process. Conclusion Copper contamination presents a significant challenge to the production of on-chip copper interconnects. A thorough grasp of the potential sources of contamination has led manufacturers to develop copper-specific methods that are not only conservative but also costly. Equipment segregation, dedicated equipment such as metrology tools, and novel wafer-handling methods help prevent cross-contamination. Further refinements in copper-processing tools will ultimately greatly lessen the risk of crosscontamination, easing the transition to high-volume copper manufacturing. 1. AG Milnes, Deep Impurities in Semiconductors (New York: Wiley, 1973). 2. RN Hall and JH Racette, Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide, Journal of Applied Physics 35, no.3 (1964): EM Conwell, Properties of Silicon and Germanium, Part II, in Proceedings of the IRE 46, no. 11 (New York: Institute of Reliability Engineering, 1958), DL Kendall and DB DeVries, Diffusion in Silicon, in Semiconductor Silicon, eds. RR Haberecht and EL Kern (New York: Electrochemical Society, 1969), K Holloway et al., Tantalum as a Diffusion Barrier between Cooper and Silicon: Failure Mechanism and Effect of Nitrogen Additions, Journal of Applied Physics 71, no.11 (1992): Acknowledgments The author would like to acknowledge the valuable contributions of Eliot Broadbent and Michal Danek of Novellus Systems in the preparation of this article. F i g u re 5. Copper contamination levels on the backsides of more than 100,000 wafers processed with the clamshell method were less than a t o m s / c m 2. * Reprinted from MICRO, July/August Used with permission. Copyright 1999 by Canon Communications LLC. Ted Cacouris, PhD, is a senior technologist for the copper damascene program at the Novellus Portland Technology Center (Portland, OR). C-17

Understanding and Reducing Copper Defects

Understanding and Reducing Copper Defects Understanding and Reducing Copper Defects Most high-performance logic manufacturers are by now developing, piloting or producing copper-based circuits. There are a number of companies that introduced copper

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time Etching Dry etch (anisotropic) SiO

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Cu/low κ. Voids, Pits, and Copper

Cu/low κ. Voids, Pits, and Copper Cu/low κ S P E C I A L s, Pits, and Copper Judy B Shaw, Richard L. Guldi, Jeffrey Ritchison, Texas Instruments Incorporated Steve Oestreich, Kara Davis, Robert Fiordalice, KLA-Tencor Corporation As circuit

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Copper Interconnect Technology

Copper Interconnect Technology Tapan Gupta Copper Interconnect Technology i Springer Contents 1 Introduction 1 1.1 Trends and Challenges 2 1.2 Physical Limits and Search for New Materials 5 1.3 Challenges 6 1.4 Choice of Materials 7

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA

Overview of CMP for TSV Applications. Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Overview of CMP for TSV Applications Robert L. Rhoades, Ph.D. Presentation for AVS Joint Meeting June 2013 San Jose, CA Outline TSV s and the Role of CMP TSV Pattern and Fill TSV Reveal (non-selective)

More information

Semiconductor Device Fabrication

Semiconductor Device Fabrication 5 May 2003 Review Homework 6 Semiconductor Device Fabrication William Shockley, 1945 The network before the internet Bell Labs established a group to develop a semiconductor replacement for the vacuum

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS INTRODUCTION TO Semiconductor Manufacturing Technology SECOND EDITION Hong Xiao TECHNISCHE INFORMATIONSBiBUOTHEK UNIVERSITATSBIBLIOTHEK HANNOVER SPIE PRESS Bellingham,Washington USA Contents Preface to

More information

IC Fabrication Technology Part III Devices in Semiconductor Processes

IC Fabrication Technology Part III Devices in Semiconductor Processes EE 330 Lecture 10 IC Fabrication Technology Part III Metalization and Interconnects Parasitic Capacitances Back-end Processes Devices in Semiconductor Processes Resistors Diodes Review from Last Lecture

More information

Nonplanar Metallization. Planar Metallization. Professor N Cheung, U.C. Berkeley

Nonplanar Metallization. Planar Metallization. Professor N Cheung, U.C. Berkeley Nonplanar Metallization Planar Metallization Passivation Metal 5 (copper) Metal 3 (copper) Interlevel dielectric (ILD) Via (tungsten) Metal 1 (copper) Tungsten Plug to Si Silicon Caps and Plugs oxide oxide

More information

EE 434 Lecture 9. IC Fabrication Technology

EE 434 Lecture 9. IC Fabrication Technology EE 434 Lecture 9 IC Fabrication Technology Quiz 7 The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 /, determine the resistance between nodes A and

More information

EE 330 Lecture 9. IC Fabrication Technology Part 2

EE 330 Lecture 9. IC Fabrication Technology Part 2 EE 330 Lecture 9 IC Fabrication Technology Part 2 Quiz 8 A 2m silicon crystal is cut into wafers using a wire saw. If the wire diameter is 220um and the wafer thickness is 350um, how many wafers will this

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time IC Fabrication Technology Crystal Preparation

More information

Process Development and Process Integration of Semiconductor Devices

Process Development and Process Integration of Semiconductor Devices Process Development and Process Integration of Semiconductor Devices Mark T. Tinker, Ph.D. Department of Electrical Engineering University of Texas at Dallas Process Development Activities Worked in Process

More information

Alternate Channel Materials for High Mobility CMOS

Alternate Channel Materials for High Mobility CMOS Alternate Channel Materials for High Mobility CMOS By Christopher Henderson This year s International Electron Device Meeting (IEDM) discussed a wide range of approaches for creating CMOS transistors with

More information

Test Patterns for Chemical Mechanical Polish Characterization

Test Patterns for Chemical Mechanical Polish Characterization Dobek S: CMP Characterization 15th Annual Microelectronic Engineering Conference, 1997 Test Patterns for Chemical Mechanical Polish Characterization Stanley 3. Dobek Senior Microelectronic Engineering

More information

INTEGRATED-CIRCUIT TECHNOLOGY

INTEGRATED-CIRCUIT TECHNOLOGY INTEGRATED-CIRCUIT TECHNOLOGY 0. Silicon crystal growth and wafer preparation 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition 1.4. Etching 1.5. Diffusion 1.6 Backend: assembly,

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents UNIT I INTRODUCTION: Introduction to IC Technology MOS, PMOS, NMOS, CMOS & BiCMOS technologies. BASIC ELECTRICAL PROPERTIES : Basic Electrical

More information

Properties and Barrier Material Interactions of Electroless Copper used for Seed Enhancement

Properties and Barrier Material Interactions of Electroless Copper used for Seed Enhancement Mat. Res. Soc. Symp. Proc. Vol. 766 2003 Materials Research Society E1.4.1 Properties and Barrier Material Interactions of Electroless Copper used for Seed Enhancement C. Witt a,b,k.pfeifer a,c a International

More information

Roadmap in Mask Fab for Particles/Component Performance

Roadmap in Mask Fab for Particles/Component Performance Accelerating the next technology revolution Roadmap in Mask Fab for Particles/Component Performance Frank Goodwin, Vibhu Jindal, Patrick Kearney, Ranganath Teki, Jenah Harris-Jones, Andy Ma, Arun John

More information

TXRF TO MONITOR FOR HIGH K DIELECTRIC MATERIAL CONTAMINATION IN A SEMICONDUCTOR FAB

TXRF TO MONITOR FOR HIGH K DIELECTRIC MATERIAL CONTAMINATION IN A SEMICONDUCTOR FAB Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 517 TXRF TO MONITOR FOR HIGH K DIELECTRIC MATERIAL CONTAMINATION IN A SEMICONDUCTOR FAB Chris Sparks

More information

Lam Research Corporation

Lam Research Corporation Lam Research Corporation 2012 Analyst & Investor Meeting 1 Safe Harbor Statement This presentation contains certain forward looking statements, including, our ability to execute our growth strategies,

More information

Alternatives to Aluminium Metallization

Alternatives to Aluminium Metallization Alternatives to Aluminium Metallization Technological pressures on the speed and reliability of integrated circuits has caused a need for changes to be made in the choices of materials used for metallization

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information

Intel Pentium Processor W/MMX

Intel Pentium Processor W/MMX Construction Analysis Intel Pentium Processor W/MMX Report Number: SCA 9706-540 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone: 602-998-9780 Fax:

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 19: CMOS Fabrication Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Miller Effect Interconnect

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Motorola PC603R Microprocessor

Motorola PC603R Microprocessor Construction Analysis Motorola PC603R Microprocessor Report Number: SCA 9709-551 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax:

More information

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 5: Fabrication processes QUIZ 3: CMOS layout Quiz Discussion Rationale If you know how something is put together, you can figure out how to take it

More information

A Production-Proven Shallow Trench Isolation (STI) Solution Using Novel CMP Concepts*

A Production-Proven Shallow Trench Isolation (STI) Solution Using Novel CMP Concepts* A Production-Proven Shallow Trench Isolation (STI) Solution Using Novel CMP Concepts* Raymond R. Jin, Jeffrey David, Bob Abbassi, Tom Osterheld, Fritz Redeker Applied Materials, 3111 Coronado Drive, M/S

More information

Motorola MC68360EM25VC Communication Controller

Motorola MC68360EM25VC Communication Controller Construction Analysis EM25VC Communication Controller Report Number: SCA 9711-562 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax:

More information

1.1 Background Cu Dual Damascene Process and Cu-CMP

1.1 Background Cu Dual Damascene Process and Cu-CMP Chapter I Introduction 1.1 Background 1.1.1 Cu Dual Damascene Process and Cu-CMP In semiconductor manufacturing, we always directed toward adding device speed and circuit function. Traditionally, we focused

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects EE 330 Lecture 8 IC Fabrication Technology Part II - Oxidation - Epitaxy - Polysilicon - Interconnects Review from Last Time MOS Transistor Bulk Source Gate Drain p-channel MOSFET Lightly-doped n-type

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

CMOS Manufacturing process. Design rule set

CMOS Manufacturing process. Design rule set CMOS Manufacturing process Circuit design Set of optical masks Fabrication process Circuit designer Design rule set Process engineer All material: Chap. 2 of J. Rabaey, A. Chandrakasan, B. Nikolic, Digital

More information

Micron Semiconductor MT4LC16M4H9 64Mbit DRAM

Micron Semiconductor MT4LC16M4H9 64Mbit DRAM Construction Analysis Micron Semiconductor MT4LC16M4H9 64Mbit DRAM Report Number: SCA 9705-539 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone:

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Advanced Metrology for Copper/Low-k Interconnects

Advanced Metrology for Copper/Low-k Interconnects Advanced Metrology for Copper/Low-k Interconnects Executive Summary The semiconductor industry s continued push to reduce feature size and increase circuit speed has resulted in a global race to reinvent

More information

Lecture #18 Fabrication OUTLINE

Lecture #18 Fabrication OUTLINE Transistors on a Chip Lecture #18 Fabrication OUTLINE IC Fabrication Technology Introduction the task at hand Doping Oxidation Thin-film deposition Lithography Etch Lithography trends Plasma processing

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

Method For Stripping Copper In Damascene Interconnects >>>CLICK HERE<<<

Method For Stripping Copper In Damascene Interconnects >>>CLICK HERE<<< Method For Stripping Copper In Damascene Interconnects Damascene, or acid copper plating baths, have been in use since the mid 19th century on decorative items and machinery.1,2 The process generally uses

More information

Oxidation Part 1. By Christopher Henderson

Oxidation Part 1. By Christopher Henderson Oxidation Part 1 By Christopher Henderson In this new series, we will discuss the subject of oxidation. Oxidation is a key aspect of the semiconductor process. The fact that one can easily grow an oxide

More information

FUNDAMENTALS OF SEMICONDUCTOR PROCESSING TECHNOLOGY

FUNDAMENTALS OF SEMICONDUCTOR PROCESSING TECHNOLOGY FUNDAMENTALS OF SEMICONDUCTOR PROCESSING TECHNOLOGY FUNDAMENTALS OF SEMICONDUCTOR PROCESSING TECHNOLOGY by Badih EI-Kareh IBM Corporation Graphics and Layout: Richard J. Bombard SPRINGER SCIENCE+BUSINESS

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

EE 330 Lecture 12. Devices in Semiconductor Processes

EE 330 Lecture 12. Devices in Semiconductor Processes EE 330 Lecture 12 Devices in Semiconductor Processes Review from Lecture 9 Copper Interconnects Limitations of Aluminum Interconnects Electromigration Conductivity not real high Relevant Key Properties

More information

Amorphous and Polycrystalline Thin-Film Transistors

Amorphous and Polycrystalline Thin-Film Transistors Part I Amorphous and Polycrystalline Thin-Film Transistors HYBRID AMORPHOUS AND POLYCRYSTALLINE SILICON DEVICES FOR LARGE-AREA ELECTRONICS P. Mei, J. B. Boyce, D. K. Fork, G. Anderson, J. Ho, J. Lu, Xerox

More information

Exam 1 Friday Sept 22

Exam 1 Friday Sept 22 Exam 1 Friday Sept 22 Students may bring 1 page of notes Next weeks HW assignment due on Wed Sept 20 at beginning of class No 5:00 p.m extension so solutions can be posted Those with special accommodation

More information

Motorola MPA1016FN FPGA

Motorola MPA1016FN FPGA Construction Analysis Motorola MPA1016FN FPGA Report Number: SCA 9711-561 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax: 602-515-9781

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

The History & Future of

The History & Future of The History & Future of CMP CMPUG July 2008 Karey Holland, Ph.D. kholland@nexplanar.com Ken Cadien, Ph.D. University of Alberta kcadien@ualberta.ca http://www.nexplanar.com http://www.ualberta.ca/ Outline

More information

Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM

Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM Construction Analysis Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM Report Number: SCA 9703-499 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities. Vincent Mevellec, PhD

Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities. Vincent Mevellec, PhD Metallizing High Aspect Ratio TSVs For MEMS Challenges and Capabilities Vincent Mevellec, PhD Agenda Introduction MEMS and sensors market TSV integration schemes Process flows for TSV Metallization aveni

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

ECSE 6300 IC Fabrication Laboratory Lecture 8 Metallization. Die Image

ECSE 6300 IC Fabrication Laboratory Lecture 8 Metallization. Die Image ECSE 6300 IC Fabrication Laboratory Lecture 8 Metallization Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Nanoelectronics Fabrication Facility

Nanoelectronics Fabrication Facility Nanoelectronics Fabrication Facility Contents Introduction 2 Mask Making Module 4 Photolithography Module 6 Wet Etching and CMP Module 8 Dry Etching and Sputtering Module 10 Thermal Process and Implantation

More information

VTC VM365830VSJ Pre-Amp

VTC VM365830VSJ Pre-Amp Construction Analysis VTC VM365830VSJ Pre-Amp Report Number: SCA 9708-549 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax: 602-515-9781

More information

Micron Semiconductor MT5C64K16A1DJ 64K x 16 SRAM

Micron Semiconductor MT5C64K16A1DJ 64K x 16 SRAM Construction Analysis Micron Semiconductor MT5C64K16A1DJ 64K x 16 SRAM Report Number: SCA 9412-394 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone:

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology von A bis Z Metallization www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Metallization 1 1.1 Requirements on metallization........................

More information

Slide 1. Slide 2. Slide 3. Chapter 19: Electronic Materials. Learning Objectives. Introduction

Slide 1. Slide 2. Slide 3. Chapter 19: Electronic Materials. Learning Objectives. Introduction Slide 1 Chapter 19: Electronic Materials 19-1 Slide 2 Learning Objectives 1. Ohm s law and electrical conductivity 2. Band structure of solids 3. Conductivity of metals and alloys 4. Semiconductors 5.

More information

2006 UPDATE METROLOGY

2006 UPDATE METROLOGY INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS METROLOGY THE ITRS DEVED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS

More information

SLURRY FORMULATION OPTIONS

SLURRY FORMULATION OPTIONS SLURRY FORMULATION OPTIONS CHALLENGES FOR DEFECT REDUCTION IN CU,Ta/TaN AND Ru PLANARIZATION S. V. Babu Center for Advanced Materials Processing, 1 Clarkson University (www.clarkson.edu/camp) Acknowledgments

More information

Micromachining AMT 2505

Micromachining AMT 2505 Micromachining AMT 2505 Shanmuga Raja.B (BVB0912004) Module leader : Mr. Raja Hussain Introduction Micromachining are inherently connected to the evolution of Micro Electro Mechanical Systems (MEMS). Decades

More information

Fabrication and Layout

Fabrication and Layout ECEN454 Digital Integrated Circuit Design Fabrication and Layout ECEN 454 3.1 A Glimpse at MOS Device Polysilicon Aluminum ECEN 475 4.2 1 Material Classification Insulators Glass, diamond, silicon oxide

More information

Remote Plasma Source Chamber Anodization

Remote Plasma Source Chamber Anodization Remote Plasma Source Chamber Anodization SUPERIOR ANODIC COATINGS IN THE XSTREAM RPS CHAMBER ENSURE RELIABLE, PARTICULATE-REE CHAMBER CLEANING Created by Advanced Energy Industries, Inc. Abstract Most

More information

UHF-ECR Plasma Etching System for Gate Electrode Processing

UHF-ECR Plasma Etching System for Gate Electrode Processing Hitachi Review Vol. 51 (2002), No. 4 95 UHF-ECR Plasma Etching System for Gate Electrode Processing Shinji Kawamura Naoshi Itabashi Akitaka Makino Masamichi Sakaguchi OVERVIEW: As the integration scale

More information

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Abstract The recent installation of a new etch tool, the Surface

More information

Oki M A-60J 16Mbit DRAM (EDO)

Oki M A-60J 16Mbit DRAM (EDO) Construction Analysis Oki M5117805A-60J 16Mbit DRAM (EDO) Report Number: SCA 9707-545 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

Cu electroplating in advanced packaging

Cu electroplating in advanced packaging Cu electroplating in advanced packaging March 12 2019 Richard Hollman PhD Principal Process Engineer Internal Use Only Advancements in package technology The role of electroplating Examples: 4 challenging

More information

Corial PS200 4-sided multi-module platform

Corial PS200 4-sided multi-module platform Corial PS200 4-sided multi-module platform Single wafer platform equipped with 200 mm modules Integration of ICP-CVD or PECVD process chambers Fully automated platform with cassette-to-cassette handler

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Development of Sidewalls Passivating Films Sidewalls get inert species deposited on them with plasma etch Creates

More information

Analog Devices ADSP KS-160 SHARC Digital Signal Processor

Analog Devices ADSP KS-160 SHARC Digital Signal Processor Construction Analysis Analog Devices ADSP-21062-KS-160 SHARC Digital Signal Processor Report Number: SCA 9712-575 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale,

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Dallas Semicoductor DS80C320 Microcontroller

Dallas Semicoductor DS80C320 Microcontroller Construction Analysis Dallas Semicoductor DS80C320 Microcontroller Report Number: SCA 9702-525 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone:

More information

TSV Failure Mechanisms

TSV Failure Mechanisms TSV Failure Mechanisms By Christopher Henderson This section covers Through-Silicon Via, or TSV, Failure Mechanisms. The first failure mechanism we ll discuss is copper pumping. This is related to the

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Rockwell R RF to IF Down Converter

Rockwell R RF to IF Down Converter Construction Analysis Rockwell R6732-13 RF to IF Down Converter Report Number: SCA 9709-552 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

Lattice isplsi1032e CPLD

Lattice isplsi1032e CPLD Construction Analysis Lattice isplsi1032e CPLD Report Number: SCA 9612-522 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone: 602-998-9780 Fax: 602-948-1925

More information

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline:

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: Fabrication of p-n junctions Contact Potential Things you should know when you leave Key Questions What are the necessary steps to fabricate

More information

Lattice 3256A-90LM PLD

Lattice 3256A-90LM PLD Construction Analysis PLD Report Number: SCA 9705-538 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax: 602-515-9781 e-mail: ice@ice-corp.com

More information

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch Chapter 1.6 I - Substrate Specifications Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table Diameter 100 mm 4-inch 150 mm 6-inch Thickness 525 µm 20.5 mils 675

More information

Lecture 5: Micromachining

Lecture 5: Micromachining MEMS: Fabrication Lecture 5: Micromachining Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class E-beam lithography X-ray

More information